
RESEARCH Open Access

Identifying middle school students’
challenges in computational thinking-based
science learning
Satabdi Basu1*, Gautam Biswas2, Pratim Sengupta3, Amanda Dickes4, John S. Kinnebrew5 and Douglas Clark4

* Correspondence:
satabdi.basu@sri.com
1SRI International, 333 Ravenswood
Avenue, Menlo Park, California
94025, USA
Full list of author information is
available at the end of the article

Abstract

Computational thinking (CT) parallels the core practices of science, technology,
engineering, and mathematics (STEM) education and is believed to effectively
support students’ learning of science and math concepts. However, despite the
synergies between CT and STEM education, integrating the two to support synergistic
learning remains an important challenge. Relatively, little is known about how a
student’s conceptual understanding develops in such learning environments and the
difficulties they face when learning with such integrated curricula. In this paper, we
present a research study with CTSiM (Computational Thinking in Simulation and
Modeling)—computational thinking-based learning environment for K-12 science,
where students build and simulate computational models to study and gain an
understanding of science processes. We investigate a set of core challenges (both
computational and science domain related) that middle school students face when
working with CTSiM, how these challenges evolve across different modeling activities,
and the kinds of support provided by human observers that help students overcome
these challenges. We identify four broad categories and 14 subcategories of challenges
and show that the human-provided scaffolds help reduce the number of challenges
students face over time. Finally, we discuss our plans to modify the CTSiM interfaces
and embed scaffolding tools into CTSiM to help students overcome their various
programming, modeling, and science-related challenges and thus gain a deeper
understanding of the science concepts.

Keywords: Computational thinking, Agent-based modeling, Simulations,
Visual programming, Learning-by-design, Scaffolding, Science education

Introduction
Computational thinking (CT) refers to the concepts and representational practices

involved in formulating and solving problems, designing systems, and understanding

human behavior by drawing on fundamental computing concepts like problem represen-

tation, abstraction, decomposition, recursion, simulation, and verification (Grover and Pea

2013; Wing 2008). The practices of CT along with computational modeling and program-

ming that are integrally linked to CT have been included as key features in NRC’s K-12

science education framework (National Research Council 2011). A number of researchers

(Blikstein and Wilensky 2009; Hambrusch et al. 2009; Kynigos 2007; Sherin 2001) have

shown that computational modeling and programming parallel core practices in science

© 2016 Basu et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Basu et al. Research and Practice in Technology Enhanced
Learning (2016) 11:13
DOI 10.1186/s41039-016-0036-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s41039-016-0036-2&domain=pdf
mailto:satabdi.basu@sri.com
http://creativecommons.org/licenses/by/4.0/

education and can support students’ learning of challenging science and math concepts in

an effective manner.

Despite the emerging consensus that CT is central to STEM (science, technology,

engineering and mathematics) disciplines (Henderson et al. 2007; National Research

Council 2011), and the known synergies between CT and STEM education, empirical

studies have shown that balancing and exploiting the trade-off between the domain-

generality of CT (CT concepts and practices are valid across different domains) and the

domain-specificity of scientific representations present a significant educational design

challenge (Guzdial 1994; Sherin et al. 1993). Currently, a majority of CT-based systems

adopt open-ended contexts such as game design, storytelling, and mobile app

development. Further, their primary focus is on improving students’ interest in CT

through extracurricular activities, as opposed to aligning their learning activities with

curricular topics in science or mathematics. Also, relatively little is known about students’

developmental processes and conceptual understanding in curricula that involve learning

programming and/or computational modeling in conjunction with scientific concepts and

representational practices. Grover and Pea (2013) argue that the idea of computing as a

medium for teaching subjects besides computer science—such as science and

math—remains under-investigated. They proposed that studies which integrate CT and

STEM learning should focus on identifying the hurdles that exist in developing essential

CT elements in learners of different age groups and propose means for addressing them.

In this paper, our overarching goal is to study specific issues in integrating CT with

middle school curricular science instruction to support science and CT learning, while

also detecting and addressing the types of difficulties students face when working in these

environments. A good understanding of the learning processes provides opportunities for

designing relevant adaptive scaffolds that can help the students overcome their difficulties.

Adaptive scaffolds refer to actions taken by an agent (e.g., a human tutor or a computer-

based software agent), based on the learners’ interactions, intended to support learners in

completing their tasks (Wood et al. 1976; Puntambekar and Hubscher 2005). Such

scaffolds often seek to highlight differences between the desired and current learner

performances and provide direction to students who are unsure of how to proceed.

Over the past few years, we have developed CTSiM (Computational Thinking in

Simulation and Modeling)—a learning environment for K-12 science that is based on a

computational thinking approach (Basu et al. 2013; Sengupta et al. 2013; Basu et al. 2014).

The system consists of an agent-based, visual programming and modeling platform where

students can model, simulate, and study science processes to simultaneously learn about

domain-general computational concepts and practices and relevant science phenomena.

In this paper, we describe a think-aloud study with an initial version of CTSiM to identify

and understand the types of challenges middle school students face in working with this

environment and the kinds of support they require to overcome these challenges and

successfully complete their learning tasks. Challenges have been documented in the litera-

ture separately for programming, science learning, and inquiry learning using modeling

and simulations. However, when CT and science are integrated using a learning-by-

modeling paradigm, the challenges that arise are not known. After identifying the

challenges, we go on to describe how they influence subsequent redesign and development

of the CTSiM system to increase its effectiveness and make it better suited for integration

with classroom science instruction.

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 2 of 35

In particular, this paper investigates issues pertaining to the processes students employ

when constructing simulation models in CTSiM to learn about topics and concepts in

kinematics and ecology. We conducted a pull-out study with 15 6th grade students in a

Metro Nashville school. Each student worked on the system individually and was assisted

one-on-one by members of our research team, who not only primarily acted as observers

but also interacted with the students asking them clarifying questions and providing

support when they faced difficulties. All of the students work on the system and their

interactions with the researchers were captured using Camtasia, and these videos were

coded and later analyzed to answer the following research questions:

1. What are the different types of challenges that students face while working on

CTSiM, and what kinds of supports can help them overcome these challenges?

2. How do these challenges evolve across a sequence of curricular units taking into

account that students are scaffolded one-on-one by researchers when they have

difficulties?

The rest of the paper is organized as follows. The “Literature review” section presents

key design principles guiding the integration of CT and science education in CTSiM,

and reviews known challenges and scaffolds for CT-based environments and learning-

by-modeling environments for science. The “The CTSiM environment” describes the

CTSiM learning environment. The “Method” section describes the learning activities,

our study design, and the types of analyses we performed with the study data. In the

“Results” section, we present our results, including the categories of challenges identi-

fied, the scaffolds provided to help overcome the challenges, and how the number and

type of challenges varied across activities. We conclude with a discussion of how our

results have been influencing design of subsequent iterations of our system and the

design of CT-based learning environments for teaching science in general.

Literature review
Design as a core focus of learning using computational programming and modeling

Sengupta et al. (2013) argued that CT becomes evident only in the form of design-

based epistemic and representational practices. Grover and Pea (2013) have identified

examples of representational practices as abstractions and pattern generalizations (that

include modeling and simulation activities); symbol systems and representations;

algorithmic notions of flow of control; structured problem decomposition (modularizing);

conditional logic; and iterative, recursive, and parallel thinking. Other epistemic practices

include systematic processing of information, adopting efficiency and performance

constraints, and debugging and systematic error detection. This, in turn, aligns with the

following perspectives:

� Science as practice perspective (Duschl 2008; Lehrer and Schauble 2006), which

suggests that the development of scientific concepts is deeply intertwined with the

development of epistemic and representational practices such as modeling.

Modeling—i.e., the collective action of developing, testing, and refining models

(National Research Council 2008)—involves carefully selecting aspects of the

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 3 of 35

phenomenon to be modeled, identifying relevant variables, developing formal

representations, and verifying and validating these representations with the putative

phenomenon (Penner et al. 1998; Lehrer and Schauble 2006); and

� Learning-by-design pedagogy which suggests that students learn best when they

engage in the design and consequential use of external representations for modeling

and reasoning (Kolodner et al. 2003; Papert 1991).

From a pedagogical perspective, this means that engaging students in developing

design-based computational representational practices, such as the ones discussed

above, can be closely aligned with the development of students’ CT skills.

Several scholars have pointed out that computing can be used successfully as a

medium for teaching and learning other subjects and that this can facilitate learning in

both the subject and computing domains. For example, Papert (1991) stated that

programming is reflexive with other domains; that is, learning programming in concert

with concepts from another domain (such as math and science) can be easier than

learning them separately. Kay and Goldberg (1977) showed that object-oriented

programming using SmallTalk is useful for learning math, science, and art. Emile, a

scaffolded graphical programming interface designed and used to help students learn

physics, represents another example of synergistic learning (Guzdial 1994). Redish and

Wilson (1993), Soloway (1993), and Kafai et al. (1997) also demonstrated that reorgan-

izing scientific and mathematical concepts around computational mechanisms lowered

the learning threshold, especially in domains like physics and biology. More recently,

some researchers have exploited the synergy between CT and science to develop

CT-based science curricular units for K-12 classrooms (Sengupta et al., 2015; Basu, Kin-

nebrew & Biswas 2014; Allan et al. 2010; Repenning et al. 2010).

In each of the environments discussed above, students learn through an iterative

model building process. Previous studies have shown that middle school and elemen-

tary children can successfully use programming as a mode of inquiry to develop models

of scientific phenomena, which in turn helps them develop a deep understanding of the

relevant scientific concepts (diSessa et al. 1991; Sengupta & Farris 2012). CTSiM adopts

this learning-by-design pedagogical approach (Kolodner et al. 2003), and students itera-

tively design, test, and revise computational models of physics and ecology.

Agent-based modeling can leverage students’ prior knowledge

CTSiM is an agent-based modeling environment. The term “agent” here indicates an

individual computational object or actor (for example, a rollercoaster car or a fish in a

fish tank), which performs actions (for example, moving forward, changing directions)

based on simple rules, and these rules can be designed and controlled by the user.

Several researchers have shown that agent-based modeling can leverage K-12 students’

pre-instructional intuitions and support their learning of (a) complex and emergent

phenomena in biology, such as population dynamics in ecological systems (Basu et al.

(2014); Dickes and Sengupta 2012; Wilensky and Reisman 2006), and (b) phenomena in

the domain of Newtonian mechanics that require students to develop an understanding

of the relations between position, speed, and acceleration as aggregation of continuous

change in these variables over time (Basu et al. 2012; diSessa et al. 1991).

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 4 of 35

The advantages of visual programming

In a visual programming (VP) environment, students construct programs using

graphical objects and a drag-and-drop interface, thus making the programming more

intuitive and accessible to the novice programmer (Kelleher and Pausch 2005). Visual

constructs significantly reduce issues with program syntax and understanding textual

structures making it easier for students to focus on the semantic meaning of the

constructs (Soloway 1993). For example, visual interfaces make it easier to interpret

and use flow of control constructs, such as loops and conditionals (Parsons and Haden

2007a, b).

CTSiM provides a library of visual constructs that students can choose from and

arrange spatially to generate their computational models. If students try to drag and

drop a programming construct incorrectly, the system disallows the action and

indicates the error by explicitly displaying an “x” sign. Therefore, CTSiM eliminates the

possibility of generating programs (that is, models) with syntax errors. Examples of

other agent-based VP environments include AgentSheets (Repenning 1993), StarLogo

TNG (Klopfer et al. 2005), Scratch (Maloney et al. 2004), ViMAP (Sengupta et al.,

2015), and Alice (Conway 1997). They have been used successfully in teaching children

CT through game design, storytelling, and modeling activities.

Integration of domain-specific primitives and domain-general abstractions

Previous research suggests that learning a domain-general programming language and

then using it for domain-specific scientific modeling involves a significant pedagogical

challenge (Guzdial 1994; Sherin et al. 1993). To address this issue, CTSiM combines

domain-general and domain-specific primitives. Domain-general primitives are compu-

tational constructs (for example, “when-do-otherwise do” and “repeat” representing

conditionals and loops). Domain-specific primitives are designed specifically to support

modeling of particular aspects of the topic of study, for example, kinematics or ecology.

Imposing domain-specific names on the constructs creates semantically meaningful

structures for modeling actions in the particular domain. For example, “forward,”

“speed up,” and “slow down” represent movement, acceleration, and deceleration

actions in kinematics, respectively, and “create new” and “die” imply birth and death of

agents in ecology, respectively. Students develop more complex agent behaviors by

combining computational and domain-specific primitives. Examples include “model car

speed” behavior in kinematics and “breathe” and “eat” behaviors in ecology. Previous

studies suggest that such an approach that combines domain-general and domain-

specific computational primitives can effectively support the development of children’s

scientific models and conceptual understanding of the domain, as well as support the

development of their programming concepts and skills.

Known challenges for programming and learning-by-modeling in science

Developing a scaffolding framework for an environment like CTSiM which is intended

to be used in classroom settings warrants an in-depth understanding of the different

types of difficulties students at different levels of understanding face in the environ-

ment (Puntambekar and Hubscher 2005). Previous research has separately documented

challenges associated with science learning, programming challenges faced by students

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 5 of 35

and challenges faced with inquiry learning using modeling and simulation. However,

when science learning and learning programming skills are combined in a modeling- and

simulation-based learning environment, the types of challenges that emerge have not been

explored. In this section, we explore the known challenges in each of these areas.

Instructional approaches in science emphasize learning by engaging in knowledge

construction practices, investigation, and argumentation. These approaches to learning

through inquiry not only provide the potential to connect knowledge more effectively

to real-world contexts but also pose particular challenges for learners (Reiser 2004).

For example, learners may not be familiar with general strategies for designing

empirical tests of hypotheses and in using specific domain knowledge to plan and guide

investigations (Schauble et al. 1991). They also tend to focus on achieving desired

results rather than on understanding the principles behind the results (Perkins 1998)

and find it difficult to generalize appropriately from their work on specific problem

scenarios. Further, students tend to have difficulty mapping their intuitive understandings

to formal representations and evaluating alternate representations (Sherin 2001). In

addition, students may face social interaction and collaboration challenges or linguistic

and discourse challenges (Reiser 2004).

The challenges faced in learning science through investigative processes or discovery

learning can be grouped in a number of ways. Quintana et al. (2004) categorizes the

challenges into three categories, those related to sense making, process management,

and articulation and reflection. Sense making entails constructing and interpreting

empirical tests of hypotheses. Students need to coordinate their reasoning about

experiments or data comparisons with the implications of the findings for an

explanation of the scientific phenomena. This coordination and mapping task is

complex and requires rich subject matter knowledge to design data comparisons and

interpret findings in light of the hypotheses. Process management involves the iterative

processes of designing an investigation, collecting data, constructing and revising

explanations based on data, evaluating explanations, and communicating arguments.

These require both discipline-specific processes and content knowledge that may be

new to learners. Finally, scientific investigations require the complementary processes

of reflection and articulation as students monitor and evaluate their progress,

reconsider and refine their plans, and articulate their understanding as they proceed.

Thus, in learning science through inquiry or investigative process, students face

challenges at several levels. They face challenges with the content knowledge, as well as

the cognitive complexity of discipline-specific strategies for sense making and process

management, and the metacognitive processes for social interaction and discourse

association with scientific practices (Reiser 2004).

On the other hand, de Jong and van Joolingen (1998) identify a number of characteristic

problems that learners may encounter in discovery learning with computer simulations

and classify them according to the main discovery learning processes: hypothesis

generation, design of experiments, interpretation of data, and regulation of learning.

These challenges hold good for discovery learning using computer simulations in any

domain including science. Generating hypotheses and adapting or rejecting hypotheses

based on collected data seem to be common challenges. Also, students display

confirmation bias—the tendency to seek for information confirming hypotheses or

construct experiments that are not intended to test a hypothesis. They tend to design

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 6 of 35

inconclusive experiments and show inefficient experimentation behavior. In addition,

interpretation of data is often directed by the hypothesis and the tendency to find data

confirming the hypotheses. In particular, students find interpretation of graphs extremely

difficult. Finally, planning experiments and working in a systematic fashion are processes

students find challenging.

Students’ challenges with studying scientific phenomena using a complex systems

framework have also been studied extensively. In such systems, the collective, global

behavior emerges from the properties of individual elements and their interactions with

each other. The global or macro behaviors—known as emergent phenomena—are often,

not easily explained by the properties of the individual elements. For example, in

chemistry and physics, gas molecules’ elastic collisions at the micro level produce the

macro-level properties of pressure and temperature. In biology, animals interact with

others of the same and different species and the environment to survive, grow, and

reproduce at the individual level that leads to phenomena such as evolution, natural

selection, and population dynamics at the ecosystem level. Students find the behaviors

of individual elements intuitive but struggle to understand their relations with the

aggregate behavior (Wilensky & Resnick 1999; Chi 2005).

Studies have not yet been conducted for studying students’ challenges with learning

CT skills, but several studies have documented the challenges students face while writ-

ing programs. Most of these challenges are, however, in the context of undergraduate

programming with text-based programming languages. For example, students are found

to have difficulties with assembling programs and writing syntactically correct

programs. Programming languages tend to have only a few components which are

combined in many different ways, and learning to understand the semantic results of

different combinations is considered complex. Also, understanding how to combine

programs to achieve particular goals is known to be a challenge (Spohrer 1989). When

students try to assemble programs by combining elements, they often get confused

with syntax problems as they struggle to understand semantic ones. Another known

programming challenge in the literature is students’ lack of understanding of computa-

tional processes. Many students do not understand how interpretation of traditional

computer languages works, e.g., where does control flow and how do variables get up-

dated (DuBoulay 1989).

We expect to see some of these known science and programming challenges with

CTSiM as well. Since CTSiM tries to leverage the synergy between computational

thinking and science education by making students computationally model a scientific

phenomenon, we also anticipated situations where students’ programming challenges

might be compounded by challenges with the science domain content, or vice versa, and

were prepared to interleave scaffolds for the science content and the programming task.

Scaffolds in existing CT and science learning environments

The term scaffolding, as it relates to education, was introduced by Wood et al. (1976)

as a metaphor describing how teachers and tutors assist learners in completing learning

tasks that, without assistance, the learners would be unable to complete. Additionally,

the authors list six scaffolding functions that tutors may employ: recruitment, reduction

in degrees of freedom, direction maintenance, marking critical features, frustration

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 7 of 35

control, and demonstration. This definition of the scaffolding process focuses on a

relationship between two people and their interactions; it highlights the difficult but

important task of continually diagnosing and adapting to the needs of the learner,

whether that involves providing additional support, in the case that the learner is

struggling, or removing support, in the case that the learner is excelling (Puntambekar

and Hubscher 2005). Since this metaphor was introduced, researchers have expanded

and generalized it to different aspects of computer-based learning environments. Some

researchers define scaffolds as interface features (e.g., explanation construction tools;

Reiser 2004). Others define scaffolds as activity sequencing within the learning

environment (e.g., requiring students to answer questions before starting an invention

task; Roll et al. 2012). Still others define scaffolds as supportive actions taken for the

purpose of supporting learners in completing their tasks (e.g., providing hints; Azevedo

and Jacobson 2008; Basu & Biswas 2016).

In this section, we discuss scaffolding mechanisms documented in the literature for

helping students overcome the science and programming challenges discussed in the

previous section. Reiser (2004) proposes two complementary mechanisms of scaffolding

in software tools to help students with their science inquiry challenges related to sense

making, process management, articulation, and reflection. He proposes (i) structuring

problem-solving tasks to make them more tractable and to shape tasks for learners in

ways that makes their problem-solving more productive and (ii) problematizing subject

matter to provoke learners to devote resources to issues they might not otherwise

address. Students’ learning tasks can be structured by providing structured work spaces

to help decompose a task and organize work to help recognize important goals to

pursue. Explicit structures such as prompts, agendas, or graphical organizers can help

learners monitor their progress and keep track of what goals have been addressed and

what aspects of the task are pending. Also, restricting the problem space by narrowing

options, preselecting data, or offloading more routine parts of the task can help

learners focus resources on the aspects of the task more productive for learning. The

second proposed mechanism for scaffolding is to make some aspects of students’ work

more “problematic” in a way that increases the utility of the problem-solving

experience for learning. Rather than simplifying the task, the software leads students to

encounter and grapple with important ideas or processes. This may actually add

difficulty in the short term, but in a way that is productive for learning. For example,

eliciting articulation or collaboration can help counter the tendency toward superficial

and non-reflective work. Similarly, eliciting arguments and decisions can force students

to think deeply about the content and the relations between the evidence and their

arguments.

On the other hand, de Jong and van Joolingen (1998) describe different ways to

support learners’ challenges with discovery learning using modeling and simulation.

They suggest providing the learner with direct access to domain information and then

providing support for specific discovery processes. Insufficient prior knowledge might

be the cause that learners do not know which hypothesis to state, cannot make a good

interpretation of data, and move to unsystematic experimentation behavior; hence,

providing access to domain information comprises the first level of support. Then,

students can be supported by providing them with a hypothesis menu or scratchpad,

experimentation hints and strategies, tools for making predictions, and planning and

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 8 of 35

monitoring tools. Decomposing and structuring the discovery process can also be use-

ful scaffolds.

With respect to supporting learning of emergent science phenomena, agent-based

modeling holds immense potential. As discussed earlier in the “Agent-based modeling

can leverage students’ prior knowledge” section, it provides the means to build on

students’ intuitive understandings about individual agents acting at the micro-level to

grasp the mechanisms of emergence at the aggregate macro-level.

Scaffolds for programming challenges are limited and have focused on pointing out

syntax errors in students’ programs or providing tools to help debug programs.

Alleviating syntax problems is believed to help students focus on the semantic ones

(Soloway 1993). In fact, research comparing learning in a more and a less syntactically

strict language, Java and Python respectively, attribute the greater success of students

in Python to be a result of reduced syntactic complexity (Mannila et al. 2006).

Alleviating syntactic complexity is something we achieve in CTSiM by using a visual

programming paradigm. Thus, bugs in CTSiM are always semantic errors and never

the result of a typing error or a misremembered detail of the language syntax. Some

research also claims that visual programming languages can make understanding the

algorithmic flow of control more accessible by making complex elements of flow of

control, such as loops and conditionals, more natural (Parsons and Haden 2007a, b).

While several existing computer-based learning environments include scaffolds like

explanation construction tools, guiding questions, argumentation interfaces, work-

spaces for structuring tasks, data comparison tools, and tools for observing effects of

plans made or models built, several of these scaffolds are part of the environment de-

sign and are not adaptive. As Puntambekar and Hubscher (2005) point out, such tools

now described as scaffolds provide us with novel techniques to support student learn-

ing, but they neglect important features of scaffolding such as ongoing diagnosis, cali-

brated support, and fading. Adaptive scaffolding involves responding to individual

learner challenges. In computer-based environments, it involves tracking and interpret-

ing learner actions. For example, in Ecolab (Luckin and du Boulay 1999)—a modeling-

and simulation-based environment, the scaffolding agent intervenes whenever students

specify an incorrect relationship in their models and provides a progression of five

hints, each more specific than the previous one, with the final hint providing the an-

swer. Co-Lab (Duque et al. 2012), on the other hand, tracks student actions to provide

feedback about both students’ solutions (the models built by students) and work pro-

cesses, but is still limited to reminding students about specific actions they have not

taken or should employ more frequently for model building and testing. AgentSheets

(Repenning et al. 2010) is an example of one of the very few CT-based environments

which include adaptive scaffolds. Students are provided an automatic assessment of the

computational artifacts they build (games or science simulations). The CT patterns

present in students’ artifacts are compared against desired CT patterns for the artifacts

and represented in terms of what is known as the Computational Thinking Pattern

graph.

The CTSiM environment
A detailed description of the CTSiM learning environment can be found in Sengupta et

al. (2013). The version of CTSiM that we used in the study included three primary

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 9 of 35

interfaces visible to the learner: the Construction world (C-World) corresponding to

the “Build” interface, the Enactment world (E-World) corresponding to the “Run”

interface for model simulation, and the Envisionment world (V-World) corresponding

to the “Compare” interface for model verification. The C-World interface shown in

Fig. 1 provides students with the available set of relevant visual primitives to build their

computational models for a given science phenomenon. Students are directed to adopt

an agent-based approach by decomposing the domain into a set of agents, their

properties, and their behaviors. The behaviors are modeled using the block-structured

visual language, much like other environments, such as Scratch (Maloney et al. 2004)

and StarLogo TNG (Klopfer et al. 2009).

The student’s model is then internally translated into an intermediate language (code

graphs of parameterized computational primitives) by the “Model Translator”. CTSiM,

written in Java, includes an embedded NetLogo (Wilensky 1999) instance to simulate

and visualize the constructed model. Each block in the student’s model is translated

internally into a code graph that remains hidden from the student, and the set of code

graphs are translated into NetLogo commands by the model executor to form a

complete, executable NetLogo simulation, which can be run in the E-World and in the

V-World.

At the top of the C-World interface (see Fig. 1), students can choose the agent and

the particular agent behavior/procedure they want to model. Most agent behaviors in

CTSiM units are specified in terms of a sense and act computational model. The list of

visual primitives is provided on the left pane, and students drag and drop these

available primitives onto the right pane, arranging and parameterizing them spatially to

construct their models. The domain-general computational primitives regulate the flow

of execution in the computational model (for example, conditionals, loops), while the

domain-specific primitives generally represent agent actions (for example, moving,

eating, reproducing) or sensing conditions (for example, vision, color, touch, toxicity).

Students can observe their model behaviors as simulations in the E-World, i.e., the

“Run” interface or they can compare the simulations generated by their models against

an “expert” simulation in the V-World, i.e., the “Compare” interface. Figure 2 depicts

the V-World interface. NetLogo visualizations and plotting functionalities provide

Fig. 1 The Construction world with a “breathe” procedure for “fish” agents in the fish-tank unit

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 10 of 35

students with a dynamic, real-time display of how their agents operate in their modeled

micro-world. Students can observe agent behaviors in the animations, and study the

emergence of aggregate system behaviors by studying the generated plots and the

behaviors depicted by the animations. Although the expert model is hidden from

the students, they observe its simulated behavior and can compare these with

behaviors generated by their own models, through the synchronized side-by-side

plots and micro-world visualizations (Clark and Sengupta 2013).

Method
In this section, we describe a study where students worked with CTSiM on a learning ac-

tivity progression spanning two domains: kinematics followed by ecology in a 6th-grade

middle Tennessee classroom. Currently, there is a great emphasis on introducing students

to CT and computational methods and piquing their interest in computer science from

an early age, since today’s students will go on to live and work in a world heavily influ-

enced by computational tools (Barr and Stephenson 2011). Introducing CT at the middle

school level itself is considered useful since it is the age at which students start deciding

on future career choices based on their assessments of their skills and aptitudes. While we

chose 6th grade students for our first CTSiM study, we have successfully used CTSiM in

other later studies with middle school students from the 5th grade and 8th grade.

We discuss the data analysis approach in support of our research questions.

Materials

CTSiM curricular units

Kinematics (physics) and ecology (biology) were chosen as the curricular topics for

synergistic learning of science and CT using CTSiM. They are common and important

curricular topics in the middle school curriculum, and as Sengupta et al. (2013) ar-

gued, researchers have shown that K-12 students have difficulties in understanding

and interpreting concepts in these domains (Chi et al. 1994). Furthermore, it has been ar-

gued that students’ difficulties in both the domains have similar epistemological origins,

in that both kinematics phenomena (e.g., change of speed over time in an acceleration

field) and system-level behaviors in an ecosystem (e.g., population dynamics) involve un-

derstanding aggregation of interactions over time (Reiner et al. 2000; Chi 2005). Also,

Fig. 2 The Envisionment world for the fish-tank unit

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 11 of 35

agent-based modeling is well suited for representing such phenomena, as it enables

learners to invoke their intuitions about agent-level behaviors and organize them through

design-based learning activities, in order to explain aggregate-level outcomes. Studies have

shown that pedagogical approaches based on agent-based models and modeling can allow

novice learners to develop a deep understanding of dynamic, aggregate-level phenomen-

a—both in kinematics and ecological systems by bootstrapping, rather than discarding their

agent-level intuitions (Farris & Sengupta, 2016; Dickes & Sengupta, 2013; Dickes, Sengupta,

Farris & Basu, 2016; Wilensky and Reisman 2006; Levy and Wilensky 2008). Student activ-

ities in kinematics and ecology are explained in greater detail below.

Kinematics unit: We extended previous research by Sengupta, Farris & Wright (2012)

to design the kinematics unit in three phases.

Kinematics phase 1: This covered activities 1 and 2, where students used turtle

graphics to construct geometric shapes that represented: (1) constant speed and (2) con-

stant acceleration. In activity 1, students were introduced to programming primitives

such as “forward,” “right turn,” and “left turn” that dealt with the kinematics of motion,

primitives like “repeat” which corresponded to a computational construct (independent

of a domain construct), and primitives like “pen down” and “pen up” which were

Netlogo-specific drawing primitives. The students were given the task of generating

procedures that described the movement of a turtle for drawing n-sided regular shapes,

such as squares and hexagons. Each segment of the regular shape was walked by the

turtle in unit time indicating constant speed. Therefore, activity 1 focused on students

learning the relationship between speed, time, and distance for constant speed motion.

In activity 2, students were given the task of extending the turtle behavior to generate

shapes that represented increasing and decreasing spirals. In this unit, segments walked

by the turtle, i.e., its speed per unit time, increased (or decreased) by a constant

amount, which represented a positive (or negative) acceleration. Activity 2 thus intro-

duced students to the relations between acceleration, speed, and distance using the

“speed up” and “slow down” commands to command the motion of the turtle.

Kinematics phase 2 corresponded to activity 3, where students interpreted a speed-

time graph to construct a representative turtle trajectory. Starting from the speed-time

graph shown in Fig. 3, students developed a procedure where the length of segments

the turtle traveled during a time interval corresponded to the speed value on the graph

for that time interval. For example, it was expected that students would recognize and

model the initial segment of increasing speed by a growing spiral, followed by the

decrease in speed by a shrinking spiral, whose initial segment length equaled the final

segment length of the last spiral. Students were given the freedom to choose the shapes

associated with the increasing and decreasing spirals. We hypothesized this reverse

engineering problem would help students gain a deeper understanding of the relations

between acceleration, speed, distance, and time.

Kinematics phase 3, represented by activity 4, involved modeling the motion of a

rollercoaster car along a pre-specified track with multiple segments. In more detail,

students were asked to model a rollercoaster as it moved through different segments of

a track: (1) up (pulled by a motor) at constant speed, (2) down (with gravitational pull),

(3) flat (cruising), and then (4) up again (moving against gravity). The students had to

build their own model of rollercoaster behavior to match the observed expert behavior

for all of the segments.

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 12 of 35

The ecology unit was represented by activities 5, 6, and 7, where students modeled a

closed fish tank system in two phases. In the first phase (activity 5), students

constructed a macro-level, semi-stable model of the fish tank ecosystem by modeling

the fish and duckweed species as two agent types. Activity 5 required students to model

the food chain, respiration, locomotion, excretion, and the reproductive behaviors for

the fish and duckweed. The inability to develop a sustained macro-model, where the

fish and the duckweed could be kept alive for extended periods of time, even though all

of the macro processes associated with the two agents were correctly modeled (that is,

the behaviors generated by the students’ computational model matched the behaviors

generated by the expert model), encouraged students to reflect on what may be missing

from the macro-model. This led to the realization about the need to model the waste

cycle and its entities, primarily the two forms of bacteria and their behaviors. This

prompted the transition to the second phase (activity 6) where students identified the

continuously increasing fish waste as the culprit for the lack of sustainability of the fish

tank. Students then built the waste cycle model for the fish tank, with the Nitrosomonas

bacteria that converts the toxic ammonia in fish waste into nitrites, which is also toxic,

and the Nitrobacter bacteria that converts the nitrites into nitrates. Nitrates are consumed

by the duckweed (as nutrients) thus preventing an excessive buildup of toxic chemicals in

the fish tank environment. The combination of graphs from the micro- and macro-world

visualizations was intended to help the students develop an aggregate-level understanding

of the interdependence and balance among the different agents (fish, duckweed, and bac-

teria) in the system. After completing the ecology micro-unit, students worked on activity

7 where they discussed the combined micro-macro model with their assigned researcher

and how the macro-micro model phenomena could be combined into an aggregated

causal model describing the sustainability of the fish tank ecosystem.

The sequencing of curricular modules allowed students to tackle modeling and

reasoning with a single agent in kinematics first and then build more complex

computational models with multiple agents in ecology. This was an intentional design

decision because studies in developmental psychology (for example, Lehrer et al. 2008)

and agent-based modeling for education (for example, Goldstone & Wilensky 2008)

show that individual agent-level reasoning occurs developmentally prior to understanding

interactions among agents, and eventual aggregate-level reasoning with multiple agents

and processes. Furthermore, within each unit, the sequencing of the activities implied

increasing conceptual challenges that students would face in learning the relevant

Fig. 3 Acceleration represented in a speed-time graph (left) and turtle graphics (right)

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 13 of 35

phenomena. For example, in the kinematics unit, when students modeled a single agent,

the computational modeling tasks were presented in the order of increasing complexity,

starting from constant shapes (squares to triangles to circles) to spirals of the same shapes

(where speed became a function of the acceleration) to modeling real-world systems

involving constant and variable speed segments.

Assessments

This initial CTSiM study was primarily targeted toward understanding how students’

used the system, and the challenges they encountered while constructing science

models using the system—aspects assessed by studying students’ video data as they

worked on the system with one-on-one individualized guidance. We only used paper-

based science assessments using a pre- and post-test design to assess students’ science

learning as a result of our intervention. The science assessments included kinematics

and ecology questions (the pre- and post-tests included the same questions), which

comprised a combination of multiple-choice and short-answer questions. In the future

versions of CTSiM, we plan to assess the science models students build and other

aspects of students’ modeling behaviors.

The kinematics pre-test/post-test assessed whether agent-based modeling improved

students’ abilities to generate and explain mathematical representations of motion and

reason causally about the relations between acceleration, speed, and distance. Specifically,

the test required interpretation and generation of speed versus time graphs and generating

diagrammatic representations to explain motion in a constant acceleration field, such as

gravity. For example, one question asked students to diagrammatically represent the time

trajectory of a ball dropped from the same height on the earth and the moon. The

students were asked to explain their drawings and generate graphs of speed versus time

for the two scenarios. The kinematics assessment questions were derived either from

standard middle school science textbook questions or from pre-post assessments used

with other learning environments covering similar content.

On the other hand, most questions on the ecology assessment were designed for this

study ensuring that they closely aligned with the concepts covered in the ecology

modeling activities and the broader ecology learning goals of understanding inter-

dependence and balance in an ecosystem. The test focused on students’ understanding

of the role of species in the ecosystem, interdependence among the species, the food

chain, waste and respiration cycles, and how a change in one species affected the

others. An example question asked was “Your fish tank is currently healthy and in a

stable state. Now, you decide to remove all traces of nitrobacter bacteria from your fish

tank. Would this affect a) Duckweed, b) Goldfish, c) Nitrosomonas bacteria? Explain

your answers”.

Sample and procedure

Fifteen 6th grade students (age ranged between 11 and 13) from an ethnically diverse

middle school in middle Tennessee worked on CTSiM in a pull-out study with one-on-

one individualized verbal guidance from one of five members of our research team.

The students were chosen by their classroom science teacher, who also happened to be

their science teacher. The teacher ensured that the chosen students were representative

of different genders, ethnicities, and performance levels based on their state-level test

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 14 of 35

scores (Tennessee Comprehensive Assessment Program or TCAP). All the students in

the class (those who were chosen for the pull-out study as well as those who were not)

had provided their consent (student and parental consent) for working with CTSiM.

Hence, while the majority of the class participated in the CTSiM pull-out study, the

remainder of the class (nine students) was allowed to explore the CTSiM learning

environment on their own without one-on-one guidance (with minimal guidance from

the teacher and some other members of our research team) during the science period,

and the teacher made sure they learnt the same science topics as covered in the CTSiM

learning activities during this time. In this paper, we focus only on the 15 students who

participated in the pull-out study, and the data and analysis we present are derived

from their pre- and post-tests, their interactions with the CTSiM environment, and the

conversations they had with their assigned researcher. Since this was our first study

with the CTSiM system, our goal was to use the one-on-one interactions to determine

the approaches the students used in constructing their models, the problems they faced

during model building, how they discovered and responded to errors in their models,

and scaffolds provided by the researchers that were effective in helping them deal with

the challenges they faced when they lacked domain knowledge, or when they tried to

correct errors in their models.

The 15 students were paired one-on-one with one of the five members of our

research team. Thus, each researcher from our team worked with three students for the

study with three 1-h sessions daily (9 am–10 am, 10 am–11 am, 12:30 pm–1:30 pm), one

for each student assigned to them. On ay 1, all 15 students took the paper-based pre-tests

for both the kinematics and ecology units. They took between 25 and 40 min to finish

each test. Then, the students worked on the kinematics units (activities 1–4) from day 2

through day 4 and took the kinematics post-test on day 5. On days 6–8, they worked on

the ecology units (activities 5–7) and then took the ecology post-test on day 9. The

students worked in the CTSiM environment with their assigned researcher sitting next to

them, interacting with them when needed. The entire study took place over a span of

2 weeks toward the end of the school year, after the students had completed their annual

state-level assessments (TCAP).

All five members (one assistant professor and four graduate research assistants) of

our research team who conducted the one-on-one interviews had prior experience with

running similar studies. They met before the study and decided on a common

framework for questioning the students and interacting with them as they worked with

CTSiM. While the interviews were not strictly scripted since the conversations would

depend on individual student actions and thought processes, a common flexible

interview script was prepared and shared among the researchers. This ensured that all

of the researchers’ interview formats and structures were similar (similar questions

asked and similar examples to illustrate a concept) during each of the CTSiM learning

activities. As part of the intervention, the researchers introduced the CTSiM system

and its features to their students individually and introduced each of the learning

activities before the student started them. However, the students were not told what to

do; they had complete control over how they would go about their modeling and

debugging tasks. But the researchers did intervene to help the students when they were

stuck or frustrated by their own lack of progress. An important component of the

researchers’ interactions with the students involved targeted prompts, where they got

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 15 of 35

the students to focus on specific parts of the simulation results and verify the correctness

of their model. When needed, the researchers also asked leading questions to direct the

students to look for differences between the expert simulation results and their own

results and then reflect on possible causes for observed differences. These questions often

required the students to predict the outcome of changes they had made to their models

and then check if their predictions were supported by the simulation results.

In addition, the researchers prompted the students periodically to make them think

aloud and explain what they were currently doing on the system. They also provided

pointers about how to decompose large complex modeling problems into smaller

manageable parts and at appropriate times, reminded the students about how they had

tackled similar situations in past work. All of the student and researcher conversations

during the one-on-one interviews were recorded using the Camtasia software.1 These

videos also included recordings of the screen, so we could determine what actions the

students performed in the environment and what the consequences of those actions were.

Analysis and coding

We scored students’ pre- and post-tests and also analyzed the Camtasia™-generated

videos for all 15 students to characterize the types of challenges the students faced

while working with CTSiM and the scaffolds that were provided to help them

overcome these challenges. Two members of our research team came up with initial

rubrics for grading the pre- and post-tests, which were then iteratively refined based on

student responses. The initial rubric focused on correct answers for multiple-choice

questions and keywords and important concepts for questions requiring short answer

responses. A systematic grading scheme was developed after studying a subset of the

short answer responses. The short answer grading scheme attempted to account for

different ways a question could be answered correctly and was updated if we found a

student response which could not be graded adequately using the current rubric. We

have since used these pre-post grading rubrics in other studies (Basu et al 2014; Basu

et al. 2015), and have found the rubrics to be reliable and valid with a variety of student

responses from different studies.

The video data was coded along two dimensions: first, the type and frequency of

challenges faced during each activity and second, the scaffolds that were used to help

the students overcome the challenges. Initial codes were established using the constant

comparison method by two researchers involved in the study. To do so, they chose data

from two participants, whom we will call Sara and Jim (not their real names). They

were selected as representative cases because they had the lowest and highest state

standardized assessment (TCAP) scores in science among the 15 participants of the

pull-out study (Basu et al. 2013). When the students voluntarily asked their

interviewer/research member a question or mentioned they were not sure what to do

next or asked for help with building and debugging models, these counted as

challenges. Even if the students themselves did not ask for help, the students were

frequently asked to explain what they were doing, why they were doing what they were

doing, what they planned to do next and why, and predict the results of their actions.

When the students could not correctly predict or explain their model behaviors,

describe the semantics of programming blocks, explain their actions in the system, or

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 16 of 35

how they planned to check and debug their model, these were also considered as

student challenges. When we found instances of challenges, we documented the

challenge using a brief description, its associated timestamp, and the scaffold provided.

Definitions and examples of the types of challenges (derived by initial analysis and

repeated re-analysis to refine the definitions) are explained in detail in the “Challenges

faced and scaffolds required” section. Fourteen challenge categories were identified and

further grouped into four broad categories: (1) programming challenges, (2) modeling

challenges, (3) domain challenges, and (4) agent-based reasoning challenges—to aid in

the interpretation of the aggregate data set. Henceforth, we refer to the 14 initial

categories as “subcategories” of these four broad categories.

Two researchers unaffiliated with the study coded the remaining video data from the

other 13 participants, using our coding scheme described above. To establish reliability,

they were first asked to determine the challenges and frequency counts for activities 3,

4, and 5 from Sara’s video data. Both coders reached good agreement with the

researcher-developed codes (91.15 and 96.46 % agreement). Once reliability with the

researcher codes was established, the coders were asked to code a different student to

test their inter-rater reliability. The inter-rater reliability between coder 1 and coder 2

yielded a Cohen’s kappa of 0.895 (93.1 % agreement), implying a “very good” inter-rater

reliability rating. Then, the coders divided up the work of coding the remaining 12

student videos. Once the challenges faced and scaffolds received for all 15 students

were extracted from the video files (used to answer our first research question), we

computed the average number of challenges of each type per activity (to answer

research question 2).

Results
The average pre-post learning gains for the 15 students who participated in the

pull-out study are reported in the “Pre-post learning gains with CTSiM” section. The

“Challenges faced and scaffolds required” section presents the categories of challenge the

students faced along with the examples from each category and the corresponding

scaffolds that helped them overcome their challenges. The “Number of challenges and

their evolution time” section describes how these categories of challenges evolved over

time from activities 1 to 7.

Pre-post learning gains with CTSiM

Table 1 shows that students’ pre- to post-test gains were statistically significant for both

the kinematics and ecology units, demonstrating the combined effectiveness of our

learning environment, activity design, and the one-on-one scaffolds provided by the

researchers (Basu et al. 2012). The gains were higher in the more complex ecology

units in comparison to the kinematics units. A possible reason for this is that students

has lower prior knowledge in ecology (for example, they knew very little about the role

of bacteria in a fish tank) as compared to kinematics. This observation is supported by

their pre-test scores.

Since these pre-to-post learning gains are clearly due to a combined effect of the use

of the CTSiM environment and the verbal scaffolds provided to the students, we

compared these gains against the pre-to-post gains for the other nine students in the

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 17 of 35

Table 1 Paired t test results for kinematics and ecology pre- and post-test scores

Kinematics Ecology

Pre-test (SD)
(max = 24)

Post-test (SD)
(max = 24)

t value P value
(two-tailed)

Effect size
(Cohen’s d)

Pre-test (SD)
(max = 35.5)

Post-test (SD)
(max = 35.5)

t value P value
(two-tailed)

Effect size
(Cohen’s d)

18.07 (2.05) 19.6 (2.29) 0.699 <0.05 0.71 13.03 (5.35) 29.4 (4.99) 8.664 <0.001 3.16

Basu
et

al.Research
and

Practice
in

Technology
Enhanced

Learning
 (2016) 11:13

Page
18

of
35

class who explored CTSiM on their own without any external scaffolding. Unsurprisingly,

we found that those nine students also showed learning gains, but the effect sizes

(Cohen’s d) were much lower (0.05 versus 0.71 for kinematics and 1.09 versus 3.16 for

ecology) compared to the students who received one-on-one scaffolding. We also

computed repeated measures ANCOVA with TCAP science scores as a covariate of the

pre-test scores to study the interaction between time and condition. Not surprisingly,

there was a significant effect of condition (i.e., students who received one-on-one

scaffolding and students who did not) on pre-post learning gains in kinematics

(F(1,21) = 4.101, p < 0.06), as well as ecology (F(1,21) = 37.012, p < 0.001), indicating

the scaffolding helped students learn science content better.

Challenges faced and scaffolds required

Our analysis of the one-on-one interviews produced the four primary categories and 14

subcategories of challenges the students faced when developing and testing their

models in CTSiM. These categories are summarized as follows:

a. Domain knowledge challenges related to difficulties attributed to missing or incorrect

domain knowledge in science. Several of these challenges were reflected in students’

answers on their science pre-tests. For example, some common challenges we

identified in the kinematics domain were understanding acceleration and its relation

to speed and the effect of acceleration on distance traveled per time unit. On the

kinematics pre-test, we found common incorrect responses where students said that a

higher speed implied a higher acceleration and represented a ball falling under gravity

as traveling equal distances in each time unit. Similarly, on the ecology pre-test, we

noticed that almost no student had the required knowledge about the waste cycle in a

fish tank and the beneficial role of bacteria. The challenges we identified for the

ecology domain through analysis of our video data reflect similar problems.

b. Modeling and simulation challenges were associated with representing scientific

concepts and processes as computational models and refining constructed models

(partial or full) based on observed simulations. More specifically, these challenges

included difficulties in identifying the relevant entities in the phenomenon being

modeled; specifying how the entities interact; choosing correct preconditions and

initial conditions, model parameters, and boundary conditions; understanding

dependencies between different parts of the model and their effect on the overall

behavior; and verifying model correctness by comparing its behavior with that of an

expert model. Subcategories of these challenges could be classified as: (1) challenges

in identifying relevant entities and their interactions; (2) challenges in choosing

correct preconditions; (3) systematicity challenges; (4) challenges with specifying

model parameters and component behaviors; and (5) model verification challenges).

c. Agent-based thinking challenges—They represented difficulties students faced in

expressing agent behaviors as computational models, difficulties in understanding

how individual agent interactions lead to aggregate-level behaviors, and the

consequences of agent behavior changes on the aggregate behavior. Therefore, the

subcategories of challenges have been called: (1) thinking like an agent challenges

and (2) agent-aggregate relationship challenges.

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 19 of 35

d. Programming challenges—Students had difficulties in understanding the meaning

and use of computational constructs and other visual primitives (for example,

variables, conditionals, and loops). They had difficulties in conceptualizing agent

behaviors as distinct procedures, and some could not figure out how to compose

constructs visually to define an agent behavior. Additional difficulties were linked to

the inability to reuse code and to methodically detect incorrect agent behavior, find

root causes, and then figure out how to correct them. The programming challenge

subcategories were as follows: (1) challenges in understanding the semantics of

domain-specific primitives; (2) challenges in using computational primitives like

variables, conditionals, nesting, and loops to build programs (i.e., behaviors);

(3) procedurality challenges; (4) modularity challenges; (5) code reuse challenges;

and (6) debugging challenges).

These four types of challenges are not mutually exclusive. For example, agent-based

thinking challenges could also be considered as modeling and simulation challenges,

but specific to the agent-based modeling paradigm, we have employed in CTSiM.

However, this categorization still offers us ease of analysis and reporting. Tables 2, 3, 4,

and 5 describe the subcategories of domain knowledge, modeling, agent-based-

thinking, and programming challenges, respectively, along with examples of occurrence

of the challenges from the kinematics and ecology units and scaffolds provided by the

experimenters to help students overcome these challenges.

Number of challenges and their evolution over time

As further analysis beyond the different types of difficulties the students face when

working with CTSiM and the scaffolds which can help them in such situations, we also

studied how the frequency of challenges varied across learning activities in one domain

and across domains. This helped understand the complexities associated with different

learning activities and the variation in support required in these activities.

First, we ran an agglomerative complete-link hierarchical clustering algorithm to see

how the students grouped based on their challenge frequency profiles per activity. The

results showed that the students generally exhibited similar challenge profiles with the

exception of one student (see Fig. 4).

Figure 4 shows the challenge profiles of the two clusters—the average challenge

profile for the similar group of 14 students and one outlier, a single student who

seemed to face many more challenges than the rest of the students. This student

needed more scaffolding than the other students, and several challenges had to be

scaffolded more than once before the student could overcome those difficulties. This

student’s pre-test and standardized state-level test scores were much lower than those

of the other students, which may explain why the student had a significantly higher

number of challenges initially. Though this student had multiple challenges that

persisted through multiple activities, the number of challenges the student had came

closer to the number of challenges the others faced at the end of the kinematics

(activity 4) and ecology units (activity 7). Similarly, the student’s post-test scores also

matched that of the others, making this student’s pre-post gains higher than most of

the students.

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 20 of 35

Table 2 Domain knowledge challenges and scaffolds

Challenge Description Kinematics unit examples Ecology unit examples Scaffolds provided

Domain knowledge-related
challenges

Difficulties caused by missing or
incorrect domain knowledge

Difficulty understanding acceleration
and its relation to speed, how speed
depends on the rollercoaster
segment slope

Lack of prior knowledge about the
waste cycle in the fish tank, the
chemicals, and the role of bacteria

Explain formal procedures for
calculations; provides definitions,
explanations, and examples of different
scientific terms and concepts; help
connect domain-related theoretical
concepts to learning tasks in the
CTSiM environment; and rectify
incorrect knowledge using contrasting
cases for creating cognitive conflict

Basu
et

al.Research
and

Practice
in

Technology
Enhanced

Learning
 (2016) 11:13

Page
21

of
35

Table 3 Types of modeling and simulation challenges and scaffolds

Types of challenges Description Kinematics unit examples Ecology unit examples Scaffolds provided

Challenges with identifying relevant
entities and their interactions

Difficulty identifying the agents, their
properties, and their behaviors;
which properties a behavior
depends on and which properties a
behavior affects; and how different
agents interact with each other

Modeling work done and energy
consumed instead of speed of the
rollercoaster; difficulty understanding
relation between steepness and
speed

Difficulty identifying types of
environmental components (in this
cases, gases) that are needed to model
procedures like “breathe” and “eat”

Interviewer points out the aspects of
the phenomena that need to be
modeled; interviewer prompts
students to think about the agents
to be modeled, their properties and
behaviors, and the interactions
between agents and agents and
their environment

Challenges with choosing correct
preconditions

Difficulty in identifying and setting
appropriate initial conditions and
preconditions for different processes
and actions

Difficulty understanding that
modeling acceleration requires
specifying an initial velocity

Difficulty understanding that a fish
needs to be hungry and needs to
have duckweed present to be able
to eat

Prompt students to think about the
preconditions necessary for certain
functions/behaviors; encourage
students to vary initial conditions and
test outcomes

Systematicity challenges Difficulty in methodical exploration;
guessing and modifying the code
arbitrarily instead of using the output
behaviors to inform changes

Non-systematic exploration and
testing of different turn angles to
generate a triangle or circle

Lack of confidence about model
being built; changing model
arbitrarily in an attempt to correct
errors

Encourage students to think about
their goals, the starting points, and
their plans of action

Challenges with specifying model
parameters and component
behaviors

Difficulty determining parameters
for the visual primitive blocks in the
C-World to produce measurable
and observable outcomes and
understanding individual effects of
different components of a code
segment on the behavior of the entire
code segment

Difficulty choosing optimal input
parameters to generate clearly visible
outputs; confusion understanding
effects of turn angle, speed up
factor, and number of repeats on
figure dimensions

Inability to specify outcomes when a
condition is true and when it is not,
for example, a fish dies when there
is no oxygen

Prompt students to make changes in
parameter values to produce clearly
visible outputs; encourage testing
outcomes by varying parameter
values

Model verification challenges Difficulty verifying and validating the
model by comparing its behavior
with that of the given expert model
and identifying differences between
the models

Difficulty comparing user and expert
rollercoaster models; difficulty
correlating model with simulation

Difficulty comparing user and expert
fish tank models; difficulty correlating
changes in the model and changes
in user model output

Ask students to slow down the
simulation to make agent actions
more visible; point out the
differences between the user and
expert models

Basu
et

al.Research
and

Practice
in

Technology
Enhanced

Learning
 (2016) 11:13

Page
22

of
35

Table 4 Types of agent-based thinking challenges and scaffolds

Types of challenges Description Kinematics unit examples Ecology unit examples Scaffolds provided

Thinking like an agent challenges Difficulty in modeling a phenomenon
in terms of one or more agents, their
properties, and their associated sets of
distinct rules

Problem delinking turn angle and
forward movement to generate
shapes; difficulty understanding
effects of turning with respect to
different headings

Difficulty modeling how an agent
gains and loses energy; problem
delinking related actions—“face
nearest” does not mean going
forward as well

Drawing on paper and explaining;
making the students imagine
themselves as agents; providing
external tools and artifacts to help
understand and replicate agent
behavior; enacting agent behavior
and making students predict such
behavior; prompts to visualize agent
behavior mentally; reminder that an
agent does only what it is
programmed to do

Agent-aggregate relationship
challenges

Difficulty understanding that
aggregate-level outcomes can be
dependent on multiple agent
procedures and debugging such a
procedure requires checking each of
the associated agent procedures;
difficulty reasoning about the role
and importance of individual agents
in an aggregate system

Did not occur Difficult understanding that
aggregate outcomes like O2 levels
may depend on multiple agent
procedures

Reminder about different agents
which can affect a particular
aggregate-level outcome

Basu
et

al.Research
and

Practice
in

Technology
Enhanced

Learning
 (2016) 11:13

Page
23

of
35

Table 5 Types of programming challenges and scaffolds

Types of challenges Description Kinematics unit examples Ecology unit examples Scaffolds provided

Challenges with semantics and
execution of domain-specific
primitives

Difficulty understanding the
functionality and role of various
visual primitives and their execution
semantics

Difficulty understanding how
“right_”, “speed up” blocks work and
how to use them correctly

Did not occur Step through the code and explain
the functionality of primitives by
showing their behavior in the
E-World; explain correct syntax for
primitives

Challenges with computational
primitives like variables, conditionals,
nesting, and loops

Difficultly in understanding the
concept of variables, iterative
structures or loops, conditionals, and
how and when to nest conditionals
within other conditional statements

Difficulty coordinating loops and
turn angles to generate shapes,
understanding what it means to
increase the speed by the
“steepness” variable

Difficulty with conditionals and
nesting conditionals to represent
multiple preconditions which
needed to be satisfied
simultaneously

Explain concept of a variable using
examples; explain syntax and
semantics of loops and nested
conditions using code snippets and
their enactment

Procedurality challenges Difficulty specifying a modeling task
as a finite set of distinct steps, and
ordering the steps correctly to
model a desired behavior

Did not occur Difficulty specifying behaviors like
eat, breathe as a computational
structure made up of a small set of
primitive elements

Prompt students to describe the
phenomena and break the
phenomena into subparts and the
individual steps within each subpart

Code reuse challenges Difficulty identifying already written
similar code to reuse and
understanding which parts of the
similar code to keep intact and
which to modify

Did not occur Difficulty understanding that
“breathe” procedures for
Nitrosomonas and Nitrobacter
bacteria are similar and can be
reused

Prompts encouraging analogous
reasoning; making students think
about what similar procedures they
have already written

Modularity challenges Difficulty in separating the behavior
of the agents into independent
procedures such that each
procedure executes only one
functionality or aspect of the desired
agent behavior, independent of
other functionalities in other
procedures, along with difficulty
remembering to call/invoke each of
the procedures from the main
procedure or program

Did not occur Difficulty modeling the fish “eat” and
“swim” behaviors separately in
different procedures (though eating
and swimming together is possible
in real life, modeling calls for distinct
procedures); forgetting to call
procedures from the main “Go”
method

Prompt students to think about
which function/behavior they are
currently modeling and whether
their code pertains to only that
function

Basu
et

al.Research
and

Practice
in

Technology
Enhanced

Learning
 (2016) 11:13

Page
24

of
35

Table 5 Types of programming challenges and scaffolds (Continued)

Debugging challenges Difficulty in methodically identifying
“bugs” or unexpected outcomes in
the program, determining their
underlying causes, removing the
bugs, and testing to verify the
removal of the bugs

Difficulty testing and correcting
behavior of one rollercoaster
segment at a time

Did not occur Prompt students to walk through
their codes and think about which
part of their code might be
responsible for the bug; help break
down the task by trying to get one
code segment to work before
moving onto another

Basu
et

al.Research
and

Practice
in

Technology
Enhanced

Learning
 (2016) 11:13

Page
25

of
35

Next, we analyzed how the average number of challenges per student varied across

the kinematics and ecology units and across the activities in each unit. The average

number of challenges for an activity is calculated as the total number of challenges for

all 15 students for an activity divided by 15. This number depends on new challenges

that the students face in an activity, as well as the effectiveness of scaffolds received in

previous activities. This is because whenever the students faced challenges in an

activity, they were scaffolded. If the scaffolding was successful, the students were not

likely to face the same challenges again in their model building and checking tasks.

However, we did observe similar challenges resurfacing later in the same activity or in

subsequent activities; therefore, the students were often provided with the same

scaffolds more than once. Latter scaffolds often started with a reminder that this

scaffold was provided before when the student faced the same challenge.

Figure 5 shows how the average number of challenges varied across the different

activities. The number of challenges decreased across similar activities in the same

domain. For example, the number of challenges decreased through the progression of

shape drawing activities (activities 1–3); similarly, they decreased from activity 5

through activity 7 for the ecology units. The challenges increased in the transition

between domains (activity 4 in kinematics to activity 5 in ecology) and between

problem types in a domain (activity 3 to activity 4 in the kinematics domain). This was

because activity 4 (the rollercoaster activity) introduced a number of new modeling and

programming challenges. It required building a model of a real-world phenomenon by

taking into account relevant variables such as steepness of the rollercoaster ramp. In

addition, this was the first activity where the students’ simulation model behaviors had

to match that of an expert model behavior. This required a better understanding of the

simulation output, which was presented as a combination of an animation and graphs.

Fig. 4 Students clustered according to their number of challenges per activity

Fig. 5 Variation of average number of challenges over activities

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 26 of 35

Moreover, this activity was more challenging from a computational modeling

viewpoint, because the model required the use of nested conditionals and variables.

The students were experiencing these computational concepts for the first time, and

this explained the increase in the difficulties they faced. Similarly, when students

progressed from the kinematics domain to the ecology domain, activity 5 (the fish-tank

macro-model) introduced additional complexities in a new domain. First, the students

had to scale up from a single-agent to a multi-agent model. It also involved modeling

multiple behaviors for each agent, and the students had to figure out how to modularize

behaviors, for example, what to include in the fish “eat” behavior versus the fish “swim”

behavior. (The two are related—a fish has to swim to its food before it can eat it).

This shows that the average number of challenges in an activity is a function of the

complexity of the activity as well as the scaffolds received in the previous activities.

Since we found an increase in average number of challenges in activities 4 and 5, we

further reviewed the coded student videos to analyze whether the challenges were new

ones related to the new complexities introduced in the activities or whether they were

old ones resurfacing despite previous scaffolding. Our analysis showed that a number

of new challenges were introduced in activities 4 and 5, though a few previously

observed challenges also resurfaced in the context of the more complex activities. For

activity 4 (RC activity), the students faced several new challenges in:

� Modeling—this included difficulties in comparing user and expert models,

difficulties in setting preconditions and initial conditions and modeling aspects that

did not need to be modeled

� Programming—new challenges included difficulties in understanding the concept of

“variables”, difficulties in understanding the semantics of conditionals and nesting of

conditionals, and difficulties in debugging and testing the code in parts

� Domain knowledge—difficulties included understanding that speed varies based on

angle of the rollercoaster track segment and difficulties in understanding how

rollercoaster motion can be characterized by acceleration and speed

Similarly, the increase in challenges from activity 4 to activity 5 can be attributed to a

set of new challenges in:

� Programming—difficulties covered the inability to decompose behaviors into

separate procedures and define procedures but forget to call them from the “Go”

procedure and challenges in decomposing a behavior into a sequence of steps

� Domain—difficulties included missing or incorrect knowledge about what

duckweed feeds on and what increases and decreases fish and duckweed energy

� Agent-based thinking—included difficulties in understanding energy states of agents

and difficulties in understanding that aggregate outcomes may depend on multiple

agent procedures

Next, we looked at previously observed challenge categories which resurfaced and

increased in activities 4 and 5. In activity 4, the only previously observed challenges

which increased instead of going down with time were the programming challenge

related to understanding the syntax and semantics of domain-specific primitives and

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 27 of 35

the modeling challenge related to model validation. Facing challenges with respect to

understanding domain-specific primitives seems understandable in the wake of new

domain knowledge and related domain knowledge challenges. Also, activity 4 marked

the first time the students had to perform model validation by comparing their model

simulations against expert simulations and had to compare the two sets of animations

and plots to assess the correctness of their models. Similarly, in activity 5, there were a

few challenges previously observed in activity 4 which resurfaced and increased. For

example, programming challenges related to the use of CT primitives increased, as did

modeling challenges related to identifying relevant entities and their interactions,

choosing correct preconditions, and specifying model parameters and component

behaviors. A new domain, increase in domain complexity, and dealing with modeling

multiple agents and multiple behaviors for each agent seem to have been the primary

contributors. Further, the size (number of blocks contained) of the fish macro expert

model was about thrice that of the expert rollercoaster model, increasing the

probability of facing various difficulties in this activity (activity 5). Challenges with

using CT constructs like conditionals resurfacing in the context of complex domain

content emphasize the need for further practice and a more holistic understanding of

the constructs. Unfortunately, we did not study computational learning gains using

pre- and post-tests in this initial study, but they may have indicated that students

needed repeated practice in different contexts to gain a deep understanding of the com-

putational constructs. In other more recent studies with modified versions of CTSiM

(modified based on challenges identified in this paper), we have shown synergistic

learning of science and CT concepts (Basu et al. 2014; Basu et al. 2016). In Figs. 6, 7, 8,

and 9, we investigate these issues further, by analyzing the data available from this study

to study how the four primary categories of challenges individually varied across

activities.

Figure 6 shows that students generally had fewer difficulties with domain knowledge

in kinematics (activities 1–4) than in ecology (activities 5–7). For kinematics activities,

the challenges did increase with the introduction of new domain-specific concepts like

acceleration and the operation of a rollercoaster. But there was a sharp increase in the

number of challenges when students had to deal with multiple agents and their interac-

tions in the macro and micro fish tank activities. The difficulties were further com-

pounded by students’ low prior knowledge in ecology as indicated by their low ecology

pre-test scores.

Programming challenges show a similar trend as seen for average number of

challenges in general in Fig. 5. Figure 7 shows that students initially had problems with

understanding computational primitives, such as conditionals, loops, nesting, and

variables, but these programming challenges decreased from activities 1 to 3. Activity 4

Fig. 6 Average number of domain knowledge challenges over time

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 28 of 35

introduced a new type of programming challenge related to checking and debugging

one’s model using the results from an expert simulation. Also, challenges with

understanding primitives increased due to the number of new primitives (domain-

based and computational) introduced in activity 4. Another big challenge in activity 4

was constructing nested conditionals to model rollercoaster behavior on different

segments of the track. In activity 5, there were new types of programming challenges

related to modularity and procedurality since the fish tank macro-model required

students to specify component behaviors as separate procedures that were invoked

from one main “Go” procedure. However, challenges with understanding conditionals,

loops, nesting, and variables also increased, though they were not new to this activity.

The reason for the resurfacing of old challenges may be explained by the increase in

the complexity of the domain content in this activity (see Fig. 6), making it harder for

the students to translate the domain content into computational structures. Overall, for

both kinematics and ecology units, the programming challenges decreased over time

across activities in the unit unless an activity introduced addition complexities.

Similarly, modeling challenges (see Fig. 8) increase in number in activity 4 for

kinematics and activity 5 for ecology. Initial difficulties were related to systematicity,

specifying component behaviors, identifying entities and interactions, and model

validation. In activity 4, modeling a real-world system introduced new challenges related

to choosing correct initial conditions. The students also had the additional task of

verifying the correctness of their models by comparing against expert simulation

behaviors. For activity 5, although the average number of challenges increased, there were

Fig. 7 Average number and type of programming challenges over time

Fig. 8 Average number and type of modeling challenges over time

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 29 of 35

no new types of modeling challenges. Existing modeling challenges resurfaced in light of

the sharp increase in domain knowledge-related challenges. However, when the students

switched to the fish tank micro-unit (activity 6), they had overcome most of these

challenges.

For the agent-based thinking challenges (see Fig. 9), challenges went down with time

in both the kinematics and ecology units. Since the kinematics models had single

agents, the challenges related to agent-aggregate relationships did not occur in activities

1–4. Unlike the other three categories of challenges, the number of challenges did not

increase in activity 4. This is possibly because activity 4 did not introduce any new

agent-based-thinking-related challenges. However, the agent-based thinking challenges

resurfaced in activity 5 when the students were required to model multiple new agents,

and modeling multiple agents caused the number of challenges to increase sharply. Like

other types of challenges, the students were also able to overcome most of these

challenges by activities 6 and 7.

Discussion and conclusion
In this paper, we have systematically documented and analyzed the challenges students

face when integrating computational thinking with middle school science curricula

using CTSiM—a learning environment where students learn their science by building

and simulating models of science phenomena. Our research team provided the

scaffolds to handle these difficulties, and our analyses show that the number of

challenges students face generally decreased as they worked through a progression of

activities in one domain, though some challenges resurfaced after initial scaffolding.

These primarily occurred in activities where the number of complexities increased in

comparison to previous units. We also showed using pre- to post-test gains that the

CTSiM intervention produced significant learning gains in science domains like

kinematics and ecology. These gains could be a combined result of a number of factors

like the CTSiM system design, the activity progression from more simple, single-agent

modeling activities to more complex, multi-agent modeling activities, and the one-on-

one scaffolds provided to students whenever they faced difficulties.

We concede that this is an initial study that was designed to test usability and,

therefore, has its limitations in drawing more detailed conclusions. The sample size in

the study was small, and the challenges identified may not be a comprehensive list.

Also, the challenges may be categorized differently, and the categories of challenges

identified were not mutually exclusive. However, this study serves as an important first

step toward evaluating CTSiM and making decisions on directions for redesign and

further development of CTSiM.

Fig. 9 Average number and type of agent-based thinking challenges over time

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 30 of 35

In addition, our results also contribute to the literature on CT at the K-12 level.

Whereas the importance of integrating CT with the K-12 curricula is well recognized,

very few of the existing environments focus on synergistic learning of CT and curricular

content, and little is known about students’ difficulties and developmental processes as

they work in CT-based environments, especially CT-based environments that promote

synergistic learning. Our results show that any learning-by-design CT-based environment

needs to build in supports for programming, domain knowledge acquisition, and

modeling tasks. In general, we find that our identified modeling and programming

challenges encompass known challenges in the literature (see the “Known challenges for

programming and learning-by-modeling in science” section), for example, challenges with

respect to sense making, process management, articulation, and systematic experimenta-

tion. We see that when we integrate science and CT using a computational modeling task,

the domain content challenges and the inquiry learning challenges emerge along with

challenges specific to the use of programming primitives and programming practices like

procedurality and modularization. However, challenges may not be mutually exclusive,

and taking this account may lead to developing more effective scaffolds. Programming

and modeling challenges can be compounded by domain knowledge-related challenges

and can resurface in the context of new domain content. But, learning programming and

modeling skills in the context of different domain topics can help generalize the learning

and lead to deeper learning. Scaffolds should also focus on contextualizing programming

and modeling scaffolds in terms of domain content, to further leverage the synergy

between science and CT.

Implications of this study and future work

The specific challenges and scaffolds that we identified in this study have played a vital

role in laying the groundwork for extending the CTSiM environment and integrating

adaptive scaffolding to help students simultaneously develop a strong understanding of

both CT and science concepts. We have been working on modifying the CTSiM

interface and adding tools to help alleviate some of the students’ challenges that we

have identified in this paper. For example, to help students overcome their domain

knowledge challenges, we have been developing hypertext science resources for the

kinematics and ecology units. Similarly, to help students with understanding

programming constructs, flow of control, and the agent-based modeling paradigm, we

have been developing a second set of hypertext resources, which we call the

“Programming guide”. These two sets of resources should help students become more

independent learners.

Also, to help students deal with their modeling challenges related to representing a

science domain in the multi-agent-based modeling paradigm (MABM) and identifying

the entities in the science domain and their interactions, we have developed new

interfaces to help students conceptualize a science phenomenon in the MABM

paradigm, before they start constructing their computational models in the C-World.

We have also modified the current “Build” interface requiring students to conceptualize

each agent behavior as a sense-act process (properties that are sensed and properties

that are acted on) before building the block-based computational model for the

behavior. We have added dynamic linking between these representations for conceptual

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 31 of 35

and computational modeling, emphasizing important CT practices of modeling at

different levels of abstractions and understanding relations between abstractions. For

example, the availability of domain-specific blocks in the “Build” interface for an agent

behavior are dependent on correct conceptualization of the behavior as a sense-act

process. Students are also provided visual feedback on the links between the conceptual

and computational representations.

Further, we have been working on adding scaffolding tools (for instance, model

tracing and partial model comparison capabilities) to support students in their model

validation and debugging tasks. Finally, besides making substantial modifications to the

CTSiM environment by adding new interfaces and tools, we have been working to

design adaptive scaffolding that takes into account how students use the different tools

and combine information from the different interfaces. We have recently conducted

research studies with this newer version of CTSiM used in classroom settings without

any external scaffolding and found extremely encouraging results which we will be

reported in subsequent publications.

Endnote
1http://www.techsmith.com/camtasia/

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SB helped develop the learning environment, conduct the interviews and collect the data, analyze and interpret video
data and data from paper-based tests, run statistical tests, and draft the manuscript. GB helped design the learning
environment, conceptualize the study, and critically revise the manuscript. PS helped design the learning activities,
conduct the interviews and collect the data, and draft parts of the manuscript. AD helped conduct the interviews and
collect the data and analyze and interpret the video data. JSK helped design the learning environment and revise the
manuscript. DC helped design the learning environment and revise the manuscript. All authors read and approved the
final manuscript.

Authors’ information
Satabdi Basu is a CS Education Researcher at SRI International, and has a Ph.D. and M.S. in Computer Science from
Vanderbilt University. Her research focuses on introducing all students to CS and computing concepts from an early
age. She has used modeling and simulation tools for synergistic learning of science and computational thinking, and
has worked on developing adaptive scaffolds for these open-ended modeling and simulation-based environments.
She is also interested in developing assessments and applying different forms of learning analytics to better under-
stand and assess students’ learning behaviors in such environments.
Gautam Biswas is a Professor of Electrical Engineering and Computer Science at Vanderbilt University and has a Ph.D.
in Computer Science from the Michigan State University. He conducts research in Intelligent Systems with primary
interests in hybrid modeling, simulation, and development of open-ended learning environments for math and
science education.
Pratim Sengupta is an Assistant Professor in the Department of Learning Sciences at University of Calgary and received his
Ph.D. in Learning Sciences from Northwestern University. His research focuses on designing new forms of generative,
computational representational systems including visual programming languages, tangible computation, narrative-based
programming, multi-agent-based models, and participatory simulations.
Amanda Dickes is a doctoral student at Vanderbilt University in the Learning Sciences and Learning Environment
Design program. Her research interests lie in developing new learning tools in both material and computational
mediums to engage elementary students in learning biology.
John S. Kinnebrew is a research scientist at Bridj and received his Ph.D. in Computer Science at Vanderbilt University.
His research focuses on the use of machine learning and data mining techniques to assess learning behaviors from
activity traces of student interaction in computer-based learning environments.
Douglas Clark is an Assistant Professor in the Department of Teaching and Learning at Vanderbilt University and
received his Ph.D. in Education at the University of California-Berkeley. His research investigates the learning processes
through which people come to understand core science concepts in digital and game-based learning environments
and focuses on conceptual change, explanation, collaboration, and argumentation.

Acknowledgements
Thanks to Brian Sulcer, Mason Wright, Emily Anne Feitl, and Ji Won Park (in no particular order) for helping develop
the system and code the video data. This work was supported by the NSF (NSF Cyber-learning grant #1124175 and
#1441542).

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 32 of 35

http://www.techsmith.com/camtasia/

Author details
1SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, USA. 2Institute for Software Integrated
Systems and EECS Department, Vanderbilt University, Nashville, TN 37212, USA. 3Department of Learning Sciences,
University of Calgary, Calgary, Alberta, Canada. 4Department of Teaching and Learning, Peabody College, Vanderbilt
University, Nashville, TN 37235, USA. 5Research Scientist, Bridj, Boston, MA, USA.

Received: 15 December 2015 Accepted: 5 May 2016

References
Allan, W. A., Erickson, J. L., Brookhouse, P., & Johnson, J. L. (2010). Development Through a Collaborative Curriculum

Project – an Example of TPACK in Maine. TechTrends, 54(6), 36–43.
Azevedo, R., & Jacobson, M. (2008). Advances in scaffolding learning with hypertext and hypermedia: A summary and

critical analysis. Educational Technology Research and Development, 56(1), 93–100.
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role of the

computer science education community? ACM Inroads, 2(1), 48–54.
Basu, S., & Biswas, G. (2016). Providing adaptive scaffolds and measuring their effectiveness inopen ended learning

environments. In 12th International Conference of the Learning Sciences. Singapore.
Basu, S., Dickes, A., Kinnebrew, J. S., Sengupta, P., Biswas, G. (2013). CTSiM: A Computational Thinking Environment for

Learning Science through Simulation and Modeling. In Proceedings of the 5th International Conference on
Computer Supported Education (pp. 369-378). Aachen.

Basu, S., Dukeman, A., Kinnebrew, J., Biswas, G., Sengupta, P. (2014). Investigating student generated computational
models of science. In Proceedings of the 11th International Conference of the Learning Sciences (pp. 1097-1101).
Boulder.

Basu, S., Kinnebrew, J., Dickes, A., Farris, A. V., Sengupta, P., Winger, J., Biswas, G. (2012). A Science Learning Environment
using a Computational Thinking Approach. In Proceedings of the 20th International Conference on Computers in
Education (pp. 722-729). Singapore.

Basu, S., Kinnebrew, J., & Biswas, G. (2014). Assessing student performance in a computational thinking based science
learning environment. In Proceedings of the 12th International Conference on Intelligent Tutoring Systems (p. 476).
Honolulu: Springer International Publishing.

Basu, S., Sengupta, P., & Biswas, G. (2015). A scaffolding framework to support learning of emergent phenomena using multi-
agent based simulation environments. Research in Science Education, 45(2), 293–324. doi:10.1007/s11165-014-9424-z.

Blikstein, P., & Wilensky, U. (2009). An atom is known by the company it keeps: A constructionist learning environment
for materials science using agent-based modeling. International Journal of Computers for Mathematical Learning,
14(2), 81–119.

Chi, M. T. H. (2005). Common sense conceptions of emergent processes: why some misconceptions are robust. Journal
of the Learning Sciences, 14, 161–199.

Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning
science concepts. Learning and Instruction, 4, 27–43.

Clark, D. B., & Sengupta, P. (2013). Argumentation and modeling: Integrating the products and practices of science to
improve science education. In M. Khine & I. Saleh (Eds.), Approaches and Strategies in Next Generation Science
Learning (pp. 85–105). Hershey: IGI Global.

Conway, M. (1997). Alice: Easy to Learn 3D Scripting for Novices, Technical Report, School of Engineering and Applied
Sciences, University of Virginia, Charlottesville, VA.

De Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual
domains. Review of Educational Research, 68(2), 179–201.

Dickes, A., & Sengupta, P. (2013). Learning Natural Selection in 4th Grade With Agent-Based Models. Research in Science
Education, 43(3), 921–953.

Dickes, A., Sengupta, P., Farris, A. V., Basu, S. (2016). Development of Mechanistic Reasoning and Multi-level Explanations
in 3rd Grade Biology Using Multi-Agent Based Models. Science Education. doi:10.1002/sce.21217

diSessa, A. A., Abelson, H., & Ploger, D. (1991a). An overview of boxer. Journal of Mathematical Behavior, 10(1), 3–15.
duBoulay, D. (1989). Involving black people in policy formation. Planning Practice and Research, 4(1), 13–15.
Duque, R., Bollen, L., Anjewierden, A., & Bravo, C. (2012). Automating the Analysis of Problem-solving Activities in

Learning Environments: the Co-Lab Case Study. J. UCS, 18(10), 1279–1307.
Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals.

Review of Research in Education, 32(1), 268–291.
Farris, A. V., & Sengupta, P. (2016). Democratizing Children’s Computation: Learning Computational Science as Aesthetic

Experience. Educational Theory, 66(1-2), 279–296.
Goldstone, R. L., & Wilensky, U. (2008). Promoting transfer by grounding complex systems principles. The Journal of the

Learning Sciences, 17(4), 465–516.
Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the Field. Educational Researcher,

42(1), 38–43.
Guzdial, M. (1994). Software‐realized scaffolding to facilitate programming for science learning. Interactive Learning

Environments, 4(1), 001–044.
Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009). A multidisciplinary approach towards

computational thinking for science majors. In Proceedings of the 40th ACM technical symposium on Computer
science education (SIGCSE '09) (pp. 183–187). New York: ACM.

Henderson, P. B., Cortina, T. J., & Wing, J. M. (2007). Computational thinking. In ACM SIGCSE Bulletin. Vol. 39, No. 1
(pp. 195–196). New York: ACM.

Kafai, Y. B., Carter Ching, C., & Marshall, S. (1997). Children as designers of educational multimedia software. Computers
& Education, 29(2), 117–126.

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 33 of 35

http://dx.doi.org/10.1007/s11165-014-9424-z
http://dx.doi.org/10.1002/sce.21217

Kay, A., & Goldberg, A. (1977). Personal dynamic media. Computer, 10(3), 31–41.
Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: a taxonomy of programming environments

and languages for novice programmers. ACM Computing Surveys, 37, 83–137.
Klopfer, E., Scheintaub, H., Huang, W., & Wendel, D. (2009). StarLogo TNG: Making Agent Based Modeling Accessible and

Appealing to Novices In Artificial Life Models in Software.
Klopfer, E., Yoon, S., & Um, T. (2005). Teaching Complex Dynamic Systems to Young Students with StarLogo. The

Journal of Computers in Mathematics and Science Teaching, 24(2), 157–178.
Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., et al. (2003). Problem-based learning meets case-

based reasoning in the middle-school science classroom: Putting learning by design (tm) into practice. The Journal
of the Learning Sciences, 12(4), 495–547.

Kynigos, C. (2007). Half-baked logo microworlds as boundary objects in integrated design. Informatics in Education-An
International Journal, 6_2, 335–359.

Lehrer, R., & Schauble, L. (2006). Cultivating model-based reasoning in science education. In R. K. Sawyer (Ed.), The
Cambridge handbook of the learning sciences (pp. 371–388). New York: Cambridge University Press.

Lehrer, R., Schauble, L., & Lucas, D. (2008). Supporting development of the epistemology of inquiry. Cognitive
Development, 23(4), 512–529.

Levy, S. T., & Wilensky, U. (2008). Inventing a “mid-level” to make ends meet: Reasoning through the levels of
complexity. Cognition and Instruction, 26(1), 1–47.

Luckin, R., & du Boulay, B. (1999). Ecolab: The development and evaluation of a Vygotskian design framework.
International Journal of Artificial Intelligence in Education, 10(2), 198–220.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: A Sneak Preview. In Proceedings of
Creating, Connecting, and Collaborating through Computing (pp. 104–109).

Mannila, L., Peltomäki, M., & Salakoski, T. (2006). What about a simple language? Analyzing the difficulties in learning to
program. Computer Science Education, 16(3), 211–227.

National Research Council. (2008). Taking science to school: Learning and teaching science in grades K–8. Washington:
National Academy Press.

National Research Council. (2011). A framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core
Ideas. Washington: The National Academies Press.

Papert, S. (1991). Perestroika and epistemological politics. In I. Harel & S. Papert (Eds.), Constructionism (pp. 13–28).
Norwood: Ablex.

Parsons, D., & Haden, P. (2007a). Programming Osmosis: Knowledge Transfer from Imperative to Visual Programming
Environments. In S. Mann & N. Bridgeman (Eds.), Procedings of The Twentieth Annual NACCQ Conference
(pp. 209–215). New Zealand: Hamilton.

Parsons, D., & Haden, P. (2007b). Programming osmosis: Knowledge transfer from imperative to visual programming
environments. In Conference of the National Advisory Committee on Computing Qualifications. Citeseer.

Penner, D. E., Lehrer, R., & Schauble, L. (1998). From physical models to biomechanics: A design-based modeling
approach. Journal of the Learning Sciences, 7(3–4), 429–449.

Perkins, D. (1998). What is understanding? In M. S. Wiske (Ed.), Teaching for understanding: Linking research with practice
(pp. 39–58). San Francisco: Jossey-Bass.

Puntambekar, S., & Hubscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have
we gained and what have we missed? Educational psychologist, 40(1), 1–12.

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., et al. (2004). A scaffolding design framework for
software to support science inquiry. The Journal of the Learning Sciences, 13(3), 337–386.

Redish, E. F., & Wilson, J. M. (1993). Student programming in the introductory physics course: M.U.P.P.E.T. Am. J. Phys., 61, 222–232.
Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Naive physics reasoning: A commitment to substance-based

conceptions. Cognition and Instruction, 18(1), 1–34.
Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The

Journal of the Learning Sciences, 13(3), 273–304.
Repenning, A. (1993). Agentsheets: A tool for building domain-oriented visual programming. Conference on Human

Factors in Computing Systems. 142–143
Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable Game Design and the Development of a Checklist for Getting

Computational Thinking into Public Schools, The 41st ACM Technical Symposium on Computer Science Education,
SIGCSE. Milwaukee: ACM Press.

Roll, I., Holmes, N. G., Day, J., & Bonn, D. (2012). Evaluating metacognitive scaffolding in guided invention activities.
Instructional science, 40(4), 691–710.

Schauble, L., Glaser, R., Raghavan, K., & Reiner, M. (1991). Causal models and experimentation strategies in scientific
reasoning. The Journal of the Learning Sciences, 1, 201–238.

Sengupta, P., Dickes, A. C., Farris, A. V., Karan, A., Martin, D., & Wright, M. (2015). Programming in K12 classrooms.
Communications of the ACM, 58(11), 33–35.

Sengupta, P., & Farris A. V. (2012). Learning Kinematics in Elementary Grades Using Agent based Computational
Modeling: A Visual Programming Based Approach. Proceedings of the 11th International Conference on Interaction
Design & Children. (pp 78–87).

Sengupta, P., Farris, A. V., & Wright, M. (2012). From agents to aggregation via aesthetics: Learning mechanics with
visual agent-based computational modeling. Technology, Knowledge & Learning, 17(1–2), 23–42.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating Computational Thinking with K-12
Science Education Using Agent-based Computation: A Theoretical Framework. Education and Information
Technologies, 18(2), 351–380.

Sherin, B. (2001). A comparison of programming languages and algebraic notation as expressive languages for physics.
International Journal of Computers for Mathematics Learning, 6, 1–61.

Sherin, B., diSessa, A. A., & Hammer, D. (1993). Dynaturtle revisited: Learning physics through collaborative design of a
computer model. Interactive Learning Environments, 3(2), 91–118.

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 34 of 35

Soloway, E. (1993). Should we teach students to program? Communications of the ACM, 36(10), 21–25.
Spohrer, J. C. (1989). Marcel: a generate-test-and-debug (gtd) impasse/repair model of student programmers.
Wilensky, U. (1999). NetLogo. Center for Connected Learning and Computer-Based Modelling (http://ccl.northwestern.

edu/netlogo). Northwestern University, Evanston, IL.
Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning biology through constructing and

testing computational theories - An embodied modelling approach. Cognition & Instruction, 24(2), 171–209.
Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems perspective to making sense of the world.

Journal of Science Education and Technology, 8(1).
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.
Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and

Psychiatry, 17(2), 89–100.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Basu et al. Research and Practice in Technology Enhanced Learning (2016) 11:13 Page 35 of 35

http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo

	Abstract
	Introduction
	Literature review
	Design as a core focus of learning using computational programming and modeling
	Agent-based modeling can leverage students’ prior knowledge
	The advantages of visual programming
	Integration of domain-specific primitives and domain-general abstractions
	Known challenges for programming and learning-by-modeling in science
	Scaffolds in existing CT and science learning environments

	The CTSiM environment
	Method
	Materials
	CTSiM curricular units
	Assessments

	Sample and procedure
	Analysis and coding

	Results
	Pre-post learning gains with CTSiM
	Challenges faced and scaffolds required
	Number of challenges and their evolution over time

	Discussion and conclusion
	Implications of this study and future work

	http://www.techsmith.com/camtasia/
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References

