Boyd, K., Eng, K.H., Page, C.D. (2013). Area under the precision-recall curve: Point estimates and confidence intervals. In Joint European conference on machine learning and knowledge discovery in databases. https://doi.org/10.1007/978-3-642-40994-3_29. Springer, (pp. 451–466).
Bradley, A.P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition, 30(7), 1145–1159.
Article
Google Scholar
Buckland, M., & Gey, F. (1994). The relationship between recall and precision. Journal of the American society for information science, 45(1), 12–19.
Article
Google Scholar
Bucos, M. (2018). Predicting student success using data generated in traditional educational environments. TEM Journal, 7(3), 617.
Google Scholar
Chaudhry, R., Singh, H., Dogga, P., Saini, S.K. (2018). Modeling hint-taking behavior and knowledge state of students with multi-task learning. International Educational Data Mining Society. https://doi.org/10.29007/dj6b.
Chawla, N.V., Japkowicz, N., Kotcz, A. (2004). Special issue on learning from imbalanced data sets. ACM SIGKDD explorations newsletter, 6(1), 1–6.
Article
Google Scholar
Chen, C.M., Lee, H.M., Chen, Y.H. (2005). Personalized e-learning system using item response theory. Computers & Education, 44(3), 237–255.
Article
Google Scholar
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. Association for Computing Machinery New York NY United States, San Francisco California, (pp. 785–794).
Chapter
Google Scholar
Choffin, B., Popineau, F., Bourda, Y. (2020). Modelling student learning and forgetting for optimally scheduling skill review. ERCIM News, 2020(120), 12–13.
Google Scholar
Chounta, I.A., Albacete, P., Jordan, P., Katz, S., McLaren, B.M. (2017). The “Grey Area”: A computational approach to model the Zone of Proximal Development. In European Conference on Technology Enhanced Learning. https://doi.org/10.1007/978-3-319-66610-5_1. Springer, (pp. 3–16).
Cieslak, D.A., & Chawla, N.V. (2008). Learning decision trees for unbalanced data. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. https://doi.org/10.1007/978-3-540-87479-9_34. Springer, (pp. 241–256).
Coelho, O.B., & Silveira, I. (2017). Deep learning applied to learning analytics and educational data mining: A systematic literature review. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), vol. 28. https://doi.org/10.5753/cbie.sbie.2017.143, (p. 143).
Davis, D., Chen, G., Van der Zee, T., Hau_, C., Houben, G.J. (2016). Retrieval practice and study planning in moocs: Exploring classroombased self-regulated learning strategies at scale. In European conference on technology enhanced learning. Springer, (pp. 57–71).
Davis, J, & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning. https://doi.org/10.1145/1143844.1143874, (pp. 233–240).
Davis, D., Kizilcec, R.F., Hau_, C., Houben, G.J. (2018). The half-life of mooc knowledge: a randomized trial evaluating knowledge retention and retrieval practice in moocs. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge, (pp. 1–10).
Dunlosky, J., Rawson, K.A., Marsh, E.J., Nathan, M.J., Willingham, D.T. (2013). Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 4–58.
Article
Google Scholar
Duong, H., Zhu, L., Wang, Y., Heffernan, N.T. (2013). A prediction model that uses the sequence of attempts and hints to better predict knowledge: “Better to attempt the problem first, rather than ask for a hint”, (pp. 316–317): EDM.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861–874.
Article
Google Scholar
Fellman, D., Lincke, A., Jonsson, B. (2020). Do individual differences in cognition and personality predict retrieval practice activities on moocs?Frontiers in psychology, 11, 2076.
Article
Google Scholar
Galvez, J., Guzman, E., Conejo, R., Millan, E. (2009). Student knowledge diagnosis using item response theory and constraint-based modeling. In Artificial Intelligence in Education (AIED-2009)Ů Building learning systems that care: from knowledge representation to affective modelling (Vol. 200). IOS Press, (pp. 291–298).
Gounaris, A., & Torres, J. (2018). A methodology for spark parameter tuning. Big data research, 11, 22–32.
Article
Google Scholar
Guo, B., Zhang, R., Xu, G., Shi, C., Yang, L. (2015). Predicting students performance in educational data mining. In 2015 International Symposium on Educational Technology (ISET). https://doi.org/10.1109/iset.2015.33. Institute of Electrical and Electronics Engineers Inc, IEEE Computer Society, Wuhan, (pp. 125–128).
Chapter
Google Scholar
Hodara, M., Jaggars, S., Karp MJM (2012). Improving developmental education assessment and placement: Lessons from community colleges across the country. (CCRC Working Paper No. 51). New York: Community College Research Center.
House, S.K., Sweet, S.L., Vickers, C. (2016). Students’ perceptions and satisfaction with adaptive quizzing. AURCO Journal, 22(Spring), 104–110.
Google Scholar
Ibrahim, Z, & Rusli, D. (2007). Predicting students’ academic performance: Comparing artificial neural network, decision tree and linear regression. In 21st Annual SAS Malaysia Forum, 5th September, Kuala Lumpur, Malaysia.
Joseph, E. (2005). Engagement tracing: using response times to model student disengagement. Artificial intelligence in education: Supporting learning through intelligent and socially informed technology, 125, 88.
Google Scholar
Karpicke, J.D., & Roediger, H.L. (2008). The critical importance of retrieval for learning. Science, 319(5865), 966–968.
Article
Google Scholar
Khajah, M.M., Huang, Y., González-Brenes, J.P., Mozer, M.C., Brusilovsky, P. (2014). Integrating knowledge tracing and item response theory: A tale of two frameworks. In Proceedings of Workshop on Personalization Approaches in Learning Environments (PALE 2014) at the 22th International Conference on User Modeling, Adaptation, and Personalization. University of Pittsburgh, Pittsburgh, (pp. 7–15).
Google Scholar
Kohavi, R., & et al (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. Morgan Kaufmann, San Francisco, (pp. 1137–1143).
Google Scholar
Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., Blei, D.M. (2017). Automatic differentiation variational inference. The Journal of Machine Learning Research, 18(1), 430–474.
Google Scholar
Lincke, A, Jansen, M, Milrad, M, Berge, E. (2019). Using data mining techniques to assess students’ answer predictions. In The 27th International Conference on Computers in Education (Vol. 1). Asia-Pacific Society for Computers in Education, Kenting, (pp. 42–50).
Google Scholar
Maldonado-Mahauad, J., Perez-Sanagustin, M., Kizilcec, R.F., Morales, N., Munoz- Gama, J. (2018). Mining theory-based patterns from big data: Identifying selfregulated learning strategies in massive open online courses. Computers in Human Behavior, 80, 179–196.
Article
Google Scholar
Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., et al (2016). Mllib: machine learning in apache spark. The Journal of Machine Learning Research, 17(1), 1235–1241.
Google Scholar
Mullachery, V., Khera, A., Husain, A. (2018). Bayesian neural networks. arXiv preprint arXiv:180107710.
Papoušek, J., & Pelánek, R. (2015). Impact of adaptive educational system behaviour on student motivation. In International Conference on Artificial Intelligence in Education. Springer, Madrid, (pp. 348–357).
Chapter
Google Scholar
Pardos, Z.A., & Heffernan, N.T. (2011). KT-IDEM: Introducing item difficulty to the knowledge tracing model. In International conference on user modeling, adaptation, and personalization. Springer, Girona, (pp. 243–254).
Chapter
Google Scholar
Pelánek, R. (2017). Bayesian knowledge tracing, logistic models, and beyond: An overview of learner modeling techniques. User Modeling and User-Adapted Interaction, 27(3-5), 313–350.
Article
Google Scholar
Pentreath, N. (2015). Machine learning with spark. Birmingham: Packt Publishing Ltd.
Google Scholar
Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L.J., Sohl-Dickstein, J. (2015). Deep knowledge tracing. In Advances in neural information processing systems. MIT Press, Montreal, (pp. 505–513).
Google Scholar
Reise, S.P., & Revicki DA. (2014). Handbook of item response theory modeling: Applications to typical performance assessment. Routledge: Taylor & Francis, New York & London.
Book
Google Scholar
Roediger III, H.L., & Butler, A.C. (2011). The critical role of retrieval practice in long-term retention. Trends in cognitive sciences, 15(1), 20–27.
Article
Google Scholar
Roediger III, H.L., & Karpicke, J.D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological science, 17(3), 249–255.
Article
Google Scholar
Ross, B., Chase, A.M., Robbie, D., Oates, G., Absalom, Y. (2018). Adaptive quizzes to increase motivation, engagement and learning outcomes in a first year accounting unit. International Journal of Educational Technology in Higher Education, 15(1), 30.
Article
Google Scholar
Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0118432.
Seber, G.A., & Lee, A.J. (2012). Linear regression analysis, vol. 329. New York: Wiley.
Google Scholar
Settles, B., & Meeder, B. (2016). A trainable spaced repetition model for language learning. In Proceedings of the 54th annual meeting of the association for computational linguistics (volume 1: long papers), (pp. 1848–1858).
Shahiri, A.M., Husain, W., et al (2015). A review on predicting student’s performance using data mining techniques. Procedia Computer Science, 72, 414–422.
Article
Google Scholar
Simon-Campbell, L., Phelan, J., et al (2016). Effectiveness of an adaptive quizzing system as an institutional-wide strategy to improve student learning and retention. Nurse educator, 41(5), 246–251.
Article
Google Scholar
Sotsenko, A. (2017). A rich context model: Design and implementation. PhD thesis, Faculty of Technology, Linnaeus University. Växjö.
Sotsenko, A., Jansen, M., Milrad, M., Rana, J. (2016a). Using a rich context model for real-time big data analytics in twitter. In 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops. IEEE Computer Society, Vienna, (pp. 228–233).
Sotsenko, A., Zbick, J., Jansen, M., Milrad, M. (2016b). Flexible and contextualized cloud applications for mobile learning scenarios. Mobile, ubiquitous, and pervasive learning, 167–192. Springer.
Strobel, M. (2019). Aspects of transparency in machine learning. In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems. International Foundation for Autonomous Agents and Multiagent Systems, Richland, (pp. 2449–2451).
Google Scholar
Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez-Rodriguez, M. (2019). Enhancing human learning via spaced repetition optimization. Proceedings of the National Academy of Sciences, 116(10), 3988–3993.
Article
Google Scholar
Thiede, K.W., & Dunlosky, J. (1999). Toward a general model of self-regulated study: An analysis of selection of items for study and self-paced study time. Journal of experimental psychology: Learning, Memory, and Cognition, 25(4), 1024.
Google Scholar
Ting, K.M. (2010). Confusion Matrix. Encyclopedia of machine learning, 1, 260–260. Springer, Boston.
Google Scholar
Truchon, J.F., & Bayly, C.I. (2007). Evaluating virtual screening methods: Good and bad metrics for the “early recognition” problem. Journal of chemical information and modeling, 47(2), 488–508.
Article
Google Scholar
Van der Zee, T., Davis, D., Saab, N., Giesbers, B., Ginn, J., Van Der Sluis, F., Paas, F., Admiraal, W. (2018). Evaluating retrieval practice in a mooc: How writing and reading summaries of videos affects student learning. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge, (pp. 216–225).
Weng, C.G., & Poon, J. (2008). A new evaluation measure for imbalanced datasets. In Proceedings of the 7th Australasian Data Mining Conference-Volume, vol. 87. https://doi.org/10.1109/ijcnn.2011.6033267, (pp. 27–32).
Wu, G., & Chang, E.Y. (2003). Class-boundary alignment for imbalanced dataset learning. In ICML 2003 workshop on learning from imbalanced data sets, vol. II, Washington, (pp. 49–56).