Abadiano, H. R., Kurkjian, C., & Abed, F. (2001). Preparing teachers in the new millennium: Teaching the language arts within new technologies. The New England Reading Association Journal, 37, 18–23.
Google Scholar
Antonioli, M., Blake, C., & Sparks, K. (2014). Augmented reality applications in education. The Journal of Technology Studies, 40, 96–107.
Article
Google Scholar
Ariaga, B. A., & Nwanekezi, A. U. (2018). Concept mapping strategy and its effects on students’ performance in senior secondary school organic chemistry in Imo State of Nigeria. International Journal of Scientific Research in Education, 11(4), 797–809.
Google Scholar
Bacca Acosta, J. L., Baldiris Navarro, S. M., Fabregat Gesa, R., & Graf, S. (2014). Augmented reality trends in education: a systematic review of research and applications. Journal of Educational Technology and Society, 17(4), 133–149.
Google Scholar
Baig, M., Tariq, S., Rehman, R., Ali, S., & Gazzaz, Z. J. (2016). Concept mapping improves academic performance in problem solving questions in Biochemistry subject. Pakistan Journal of Medical Sciences, 32(4), 801–805. https://doi.org/10.12669/pjms.324.10432
Article
Google Scholar
Balog, A., & Pribeanu, C. (2010). The role of perceived enjoyment in the students’ acceptance of an augmented reality teaching platform: A structural equation modelling approach. Studies in Informatics and Control, 19(3), 319–330.
Article
Google Scholar
Bower, M., Howe, C., McCredie, N., Robinson, A., & Grover, D. (2014). Augmented Reality in education–cases, places and potentials. Educational Media International, 51(1), 1–15.
Article
Google Scholar
Briscoe, C., & LaMaster, S. U. (1991). Meaningful learning in college biology through concept mapping. The American Biology Teacher, 53(4), 214–219.
Article
Google Scholar
Brinkerhoff, J., & Booth, G. M. (2007). The effect of concept mapping on student achievement in an introductory non-majors biology class (Doctoral dissertation, Brigham Young University. Department of Integrative Biology).
Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536–544. https://doi.org/10.1016/j.compedu.2013.02.017
Article
Google Scholar
Cai, S., Liu, C., Wang, T., Liu, E., & Liang, J. C. (2021). Effects of learning physics using augmented reality on students’ self-efficacy and conceptions of learning. British Journal of Educational Technology, 52(1), 235–251.
Article
Google Scholar
Chen, C. H., Chou, Y. Y., & Huang, C. Y. (2016). An augmented-reality-based concept map to support mobile learning for science. The Asia-Pacific Education Researcher, 25(4), 567–578.
Article
Google Scholar
Chiou, C.-C. (2009). Effects of concept mapping strategy on learning performance in business and economics statistics. Teaching in Higher Education, 14(1), 55–69. https://doi.org/10.1080/13562510802602582.
Article
Google Scholar
Damala, A., Cubaud, P., Bationo, A., Houlier, P., & Marchal, I. (2008). Bridging the gap between the digital and the physical: design and evaluation of a mobile augmented reality guide for the museum visit. In Proceedings of the 3rd international conference on Digital Interactive Media in Entertainment and Arts (pp. 120-127).
Danakorn Nincarean, A., Phon, L. E., Rahman, M. H. A., Utama, N. I., Ali, M. B., Abdi Halim, N. D., & Kasim, S. (2019). The Effect of Augmented Reality on Spatial Visualization Ability of Elementary School Student. International Journal on Advanced Science Engineering Information Technology. Diakses dari. https://core.ac.uk/download/pdf/296921451.pdf. [GS Search].
Davies, M. (2011). Concept mapping, mind mapping and argument mapping: What are the differences and do they matter? Higher Education, 62(3), 279–301. https://doi.org/10.1007/s10734-010-9387-6
Article
Google Scholar
Delello, J. A. (2014). Insights from pre-service teachers using science-based augmented reality. Journal of Computers in Education, 1(4), 295–311. https://doi.org/10.1007/s40692-014-0021-y
Article
Google Scholar
Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students’ motivation for a visual art course. Computers & Education, 68, 586–596. https://doi.org/10.1016/j.compedu.2012.03.002
Article
Google Scholar
Drareni, N. (2020). Using concept maps in coronavirus disease COVID-19 to enhance meaningful learning: Evidence from an action research process. les cahiers du cread, 36(3), 449–474.
Google Scholar
Edwards, J., & Fraser, K. (1983). Concept maps as reflectors of conceptual understanding. Research in Science Education, 13(1), 19–26. https://doi.org/10.1007/BF02356689.
Article
Google Scholar
Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142, 103635.
Article
Google Scholar
Fjeld, M. (2003). Introduction: Augmented reality-usability and collaborative aspects. International Journal of Human-Computer Interaction, 16(3), 387–393.
Article
Google Scholar
González, H. L., Palencia, A. P., Umaña, L. A., Galindo, L., & Villafrade, M. L. A. (2008). Mediated learning experience and concept maps: A pedagogical tool for achieving meaningful learning in medical physiology students. Advances in Physiology Education, 32(4), 312–316. https://doi.org/10.1152/advan.00021.2007
Article
Google Scholar
Gül, K., & Şahin, S. (2017). Development of augmented reality materials and examination of efficacy for computer hardware education. Bilişim Teknolojileri Dergisi, 10(4), 353–362. https://doi.org/10.17671/gazibtd.347604
Article
Google Scholar
Harris, C. M., & Zha, S. (2013). Concept mapping: A critical thinking technique. Education, 134(2), 207–211.
Google Scholar
Harrison, S., & Gibbons, C. (2013). Nursing student perceptions of concept maps: From theory to practice. Nursing Education Perspectives (Perspectives), 34(6), 395–399. https://doi.org/10.5480/10-465
Article
Google Scholar
Haugwitz, M., Nesbit, J. C., & Sandmann, A. (2010). Cognitive ability and the instructional efficacy of collaborative concept mapping. Learning and Individual Differences, 20(5), 536–543. https://doi.org/10.1016/j.lindif.2010.04.004
Article
Google Scholar
Hein, G. E. (1991). Constructivist learning theory, CECA (International Committee of Museum Educators) Conference, Israel. Retrieved from http://www.exploratorium.edu/IFI/resources/constructivistlearning.html
Heinze-Fry, J. A., & Novak, J. D. (1990). Concept mapping brings long-term movement toward meaningful learning. Science Education, 74(4), 461–472. https://doi.org/10.1002/sce.3730740406
Article
Google Scholar
Hoffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17(6), 722–738.
Article
Google Scholar
Hwang, G.-J., Wu, P.-H., & Ke, H.-R. (2011). An interactive concept map approach to supporting mobile learning activities for natural science courses. Computers & Education, 57(4), 2272–2280. https://doi.org/10.1016/j.compedu.2011.06.011.
Article
Google Scholar
Kamble, S. K., & Tembe, B. L. (2013). The effect of use of concept maps on problem solving performance and attitude in mechanical engineering course. Procedia—Social and Behavioral Sciences, 83, 748–754. https://doi.org/10.1016/j.sbspro.2013.06.141.
Article
Google Scholar
Kaufmann, H. (2003). Collaborative augmented reality in education. Institute of Software Technology and Interactive Systems, 9(11), 188.
Google Scholar
Kazanidis, I., Pellas, N., & Christopoulos, A. (2021). A learning analytics conceptual framework for augmented reality-supported educational case studies. Multimodal Technologies and Interaction, 5(3), 9.
Article
Google Scholar
Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). “Making it real”: Exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3), 163–174. https://doi.org/10.1007/s10055-006-0036-4
Article
Google Scholar
Kinchin, I. M. (2019). The salutogenic management of pedagogic frailty: A case of educational theory development using concept mapping. Education in Science, 9, 157.
Article
Google Scholar
Kinchin, I. M., Cabot, L., & Hay, D. B. (2008). Using concept mapping to locate the tacit dimension of clinical expertise: Towards a theoretical framework to support critical reflection on teaching. Learning in Health and Social Care, 7(2), 93–104. https://doi.org/10.1111/j.1473-6861.2008.00174.x
Article
Google Scholar
Kraut, B., & Jeknić, J. (2015). Improving education experience with augmented reality (AR). In 2015 38th International convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 755–760). IEEE.
Kreijns, K., Van Acker, F., Vermeulen, M., & van Buuren, H. (2013). What stimulates teachers to integrate ICT in their pedagogical practices? The use of digital learning materials in education. Computers in Human Behavior, 29(1), 217–225. https://doi.org/10.1016/j.chb.2012.08.008
Article
Google Scholar
Kwon, S. Y., & Cifuentes, L. (2009). The comparative effect of individually-constructed versus collaboratively-constructed computer-based concept maps. Computers & Education, 52(2), 365–437. https://doi.org/10.1016/j.compedu.2008.09.012
Article
Google Scholar
Liarokapis, F. (2007). An augmented reality interface for visualizing and interacting with virtual content. Virtual Reality, 11(1), 23–43.
Article
Google Scholar
Lin, T.-J., Duh, H.B.-L., Li, N., Wang, H.-Y., & Tsai, C.-C. (2013). An investigation of learners' collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system. Computers & Education, 68, 314–321. https://doi.org/10.1016/j.compedu.2013.05.011.
Article
Google Scholar
Long, D., & Carlson, D. (2011). Mind the map: How thinking maps affect student achievement. Networks: An Online Journal for Teacher Research, 13, 1–7. https://doi.org/10.4148/2470-6353.1083
Article
Google Scholar
Machado, C. T., & Carvalho, A. A. (2020). Concept mapping: Benefits and challenges in higher education. The Journal of Continuing Higher Education, 68(1), 38–53.
Article
Google Scholar
Martínez, G., Pérez, Á. L., Suero, M. I., & Pardo, P. J. (2013). The effectiveness of concept maps in teaching physics concepts applied to engineering education: Experimental comparison of the amount of learning achieved with and without concept maps. Journal of Science Education and Technology, 22(2), 204–214.
Article
Google Scholar
Marzetta, K., Mason, H., & Wee, B. (2018). ‘Sometimes They Are Fun and Sometimes They Are Not’: Concept Mapping with English Language Acquisition (ELA) and Gifted/Talented (GT) Elementary Students Learning Science and Sustainability. Education Sciences, 8(1), 13. https://doi.org/10.3390/educsci8010013.
Article
Google Scholar
Nair, S. M., & Narayanasamy, M. (2017). The Effects of Utilising the Concept Maps in Teaching History. International Journal of Instruction, 10(3), 109–126. https://doi.org/10.12973/iji.2017.1038a.
Article
Google Scholar
Nesbit, J. C., & Adesope, O. O. (2013). Concept maps for learning. In N. C. Charlotte (Ed.), Learning through visual displays (pp. 303–328). Information Age Publishing.
Google Scholar
Novak, J. D., & Cañas, A. J. (2008). The theory underlying concept maps and how to construct and use them. Technical Report IHMC CmapTools 2006–01 Rev 01–2008, 36.
Novak, J. D., & Gowin, D. B. (1984). Concept mapping for meaningful learning. In J. B. Kahle (Ed.), Learning how to learn (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139173469
Chapter
Google Scholar
Novak, J. D., Mintzes, J. I., & Wandersee, J. H. (2005). Learning, teaching, and assessment. In J. Mintzes, J. Wandersee, & J. Novak (Eds.), Assessing science understanding (pp. 1–13). Elsevier. https://doi.org/10.1016/B978-012498365-6/50003-2
Chapter
Google Scholar
Oh, S., & Byun, Y. C. (2012). The design and implementation of augmented reality learning systems. In 2012 IEEE/ACIS 11th International Conference on Computer and Information Science (pp. 651-654). IEEE.
Öner, F., & Arslan, M. (2005). İlköğretim 6. Sınıf fen bilgisi dersi elektrik ünitesinde kavram haritaları ile öğretimin öğrenme düzeyine etkisi. The Turkish Online Journal of Educational Technology, 4(4), 7.
Google Scholar
Pendley, B.D., Bretz, R.L., & Novak, J.D. (1994). Concept Maps as a Tool To Assess Learning in Chemistry. Journal of Chemical Education, 71(1), 9. https://doi.org/10.1021/ed071p9.
Perez-Lopez, D., & Contero, M. (2013). Delivering educational multimedia contents through an augmented reality application: A case study on its impact on knowledge acquisition and retention. Turkish Online Journal of Educational Technology, 12(4), 19–28.
Google Scholar
Romero, M. D. C., Cazorla, M., & Buzón García, O. (2017). Meaningful learning using concept maps as a learning strategy. Journal of Technology and Science Education, 7, 313. https://doi.org/10.3926/jotse.276
Article
Google Scholar
Ruiz Primo, M. A., Schultz, S. E., Li, M., & Shavelson, R. J. (2001). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 38(2), 260–278.
Article
Google Scholar
Sachs, J. (2002). A path model for student’s attitude to writing a thesis. Scandinavian Journal of Educational Research, 45(1), 99–108. https://doi.org/10.1080/00313830120115633
Article
Google Scholar
Şan, İ. (2008). The effect of the topic ‘transport system in plants’ that is being taught with concept maps at the 2nd class of biology lesson to the success. Unpublished Master Thesis. Selçuk University, Turkey.
Schiavi, B., Havard, V., Beddiar, K., & Baudry, D. (2022). BIM data flow architecture with AR/VR technologies: Use cases in architecture, engineering and construction. Automation in Construction, 134, 104054.
Article
Google Scholar
Sever, R., Budak, F. M., & Yalçınkaya, E. (2009). The importance of concept maps in geography education. Atatürk University Journal of Social Sciences, 13(2), 19–32.
Google Scholar
Shelton, B. E., & Hedley, N. R. (2002). Using augmented reality for teaching Earth–Sun relationships to undergraduate geography students. In The first IEEE international workshop augmented reality toolkit, Vol. 8. https://doi.org/10.1109/ART.2002.1106948
Shelton, B. E., & Stevens, R. (2004). Using coordination classes to interpret conceptual change in astronomical thinking. In 6th International conference for the learning sciences. 6th international conference for the learning sciences. Lawrence Erlbaum & Associates.
Shen, C.-X., Liu, R.-D., & Wang, D. (2013). Why are children attracted to the Internet? The role of need satisfaction perceived online and perceived in daily real life. Computers in Human Behavior, 29(1), 185–192. https://doi.org/10.1016/j.chb.2012.08.004
Article
Google Scholar
Sırakaya, M., & Çakmak, E. K. (2018). Effects of augmented reality on student achievement and self-efficacy in vocational education and training. International Journal for Research in Vocational Education and Training, 5(1), 1–18. https://doi.org/10.13152/IJRVET.5.1.1
Article
Google Scholar
Sumadio, D. D., & Rambli, D. R. A. (2010). Preliminary evaluation on user acceptance of the augmented reality use for education. In 2010 Second international conference on computer engineering and applications (pp. 461–465). https://doi.org/10.1109/ICCEA.2010.239
Tarng, W., Lin, Y. S., Lin, C. P., & Ou, K. L. (2016). Development of a lunar-phase observation system based on augmented reality and mobile learning technologies. Mobile Information Systems, 2016.
Thomas, R. G., William John, N., & Delieu, J. M. (2010). Augmented reality for anatomical education. Journal of visual communication in medicine, 33(1), 6–15.
Article
Google Scholar
Toledo-Morales, P., & Sanchez-Garcia, J. M. (2018). Use of augmented reality in social sciences as educational resource. Turkish Online Journal of Distance Education, 19(3), 38–52.
Article
Google Scholar
Tomi, A. B., & Rambli, D. R. A. (2013). An interactive mobile augmented reality magical playbook: Learning number with the thirsty crow. Procedia Computer Science, 25, 123–130. https://doi.org/10.1016/j.procs.2013.11.015
Article
Google Scholar
Trevisani, M., Cohrs, C. R., Soares, M. A. L., Duarte, J. M. D., Mancini, F., Pisa, I. T., & Domenico, E. B. L. (2016). Evaluation of learning in oncology of undergraduate nursing with the use of concept mapping. Journal of Cancer Education, 31(3), 533–540. https://doi.org/10.1007/s13187-015-0869-1
Article
Google Scholar
Tseng, S. S. (2020). Using concept mapping activities to enhance students’ critical thinking skills at a high school in Taiwan. The Asia-Pacific Education Researcher, 29(3), 249–256.
Article
Google Scholar
Ullah, A. S. (2019). Fundamental issues of concept mapping relevant to discipline-based education: A perspective of manufacturing engineering. Education in Science, 9, 228.
Article
Google Scholar
URL-1. https://learningcenter.unc.edu/tips-and-tools/using-concept-maps/
Vadlapatla, R., Kaur, S., & Zhao, Y. (2014). Evaluation of student perceptions of concept mapping activity in a didactic pharmaceutics course. Currents in Pharmacy Teaching and Learning, 6(4), 543–549. https://doi.org/10.1016/j.cptl.2014.04.014
Article
Google Scholar
Vanides, J., Yin, Y., Tomita, M., & Ruiz-Primo, M. A. (2005). Using concept maps in the science classroom. Science Scope, 28(8), 27–31.
Google Scholar
Veronese, C., Richards, J., Pernar, L., Sullivan, A., & Schwartzstein, R. (2013). A randomized pilot study of the use of concept maps to enhance problem-based learning among first-year medical students. Medical Teacher, 35(9), e1478-1484. https://doi.org/10.3109/0142159X.2013.785628
Article
Google Scholar
Wang, X. (2012). Augmented reality: A new way of augmented learning. eLearn, 2012(10), 1.
Article
Google Scholar
Wankat, P. C., & Oreovicz, F. S. (2015). Teaching engineering. Purdue University Press.
Google Scholar
Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68, 570–585. https://doi.org/10.1016/j.compedu.2013.02.014
Article
Google Scholar
Wu, H.-K., Lee, S.W.-Y., Chang, H.-Y., & Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41–49. https://doi.org/10.1016/j.compedu.2012.10.024
Article
Google Scholar
Yen, J.-C., Tsai, C.-H., & Wu, M. (2013). Augmented reality in the higher education: Students’ science concept learning and academic achievement in astronomy. Procedia—Social and Behavioral Sciences, 103, 165–173. https://doi.org/10.1016/j.sbspro.2013.10.322
Article
Google Scholar
Yuan, C., Wang, S., Yu, X., Kim, K. H., & Moon, H. (2021). The influence of flow experience in the augmented reality context on psychological ownership. International Journal of Advertising, 40(6), 922–944.
Article
Google Scholar
Yuen, S., Yaoyuneyong, G., & Johnson, E. (2011). Augmented reality: An overview and five directions for AR in education. Journal of Educational Technology Development and Exchange (JETDE), 4(1), 11. https://doi.org/10.18785/jetde.0401.10
Article
Google Scholar
Zhang, J., Sung, Y. T., Hou, H. T., & Chang, K. E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computers & education, 73, 178–188.
Article
Google Scholar