This study aimed to explore how to nurture interest and creation in programmable robotics education among young students. According to the IDC theory, in order to grow young students into habitual interest-driven creators in learning, it is important to ignite students’ curiosity in the subject matter as the first step. Previous researchers pointed out that interest is the outcome brought by the interaction between a person and a particular content, meaning that interest is always content-specific and not a personal attribute that can be applied across activities (e.g., Krapp, 2000). For example, a boy who shows interest in math is likely to be influenced by his family background, where his father is a data scientist and his mother is a math teacher. However, his interest in math is unlikely to be transferred to painting, if he finds no situational interest to stimulate his curiosity and positive feelings in painting. In educational research, there are two main types of interest, namely situational interest and individual interest. Situational interest is triggered by environmental stimuli, which may not last over time, whereas individual interest is a person’s relatively enduring predisposition over time (Harackiewicz, Durik, Barron, Linnenbrink-Garcia, & Tauer, 2008). Based on the past research, situational interest may be a precursor to the predisposition to reengage particular content for the development of individual interest (e.g., Alexander, 2004; Renninger & Hidi, 2002; Hidi & Renninger, 2006; Harackiewicz et al., 2008). For example, in an entertaining drama class for pre-school children, class teachers first try to catch students’ attention and stimulate their interest by adopting interactive teaching approaches that encourage students to explore and interact. In addition, these teachers try to provide course materials that are designed to be personally meaningful and valued for their students such that students’ interest can be maintained in the class. Supported by past evidence, if classroom factors (e.g., friendly and supportive learning environment, encouraging teachers, autonomy in learning, opportunities to think and question) promote the development of meaning and value among students, situational interest may be maintained over time. If this maintained interest can further endure beyond the particular situation and is associated with the accumulation of knowledge and value, it may eventually become a deeply-held individual interest (Hidi & Renninger, 2006; Krapp, 2002). The development from situational interest to individual interest echoes the process of interest development in the IDC theory. More specifically, this theory proposed the interest loop model for articulating the theoretical assertion of interest development in different phases, that is triggering interest, immersing interest, and extending interest. The three phases are considered as sequential and distinct. They are also accumulative in terms of progressive development. For each phase of interest development, varying amounts of effort, self-efficacy, goal setting, and self-regulated behaviors are found to characterize each phase of interest development (Lipstein & Renninger, 2006). More specifically, the later phases ignite more effort and engagement than the earlier phases. Previous researchers (Alexander, 2004; Krapp, 2002; Renninger & Hidi, 2002) also pointed out that early phases of interest development primarily consist of focused attention and positive feelings. However, the later phases are found to include not only positive feelings but also stored value and knowledge that ask for deliberate practice, task engagement, and person-object interactions. For example, in Lipstein and Renninger’s (2006) study, they found that students in the earlier phases of interest development (i.e., the phase of triggering interest) for writing put limited effort in writing practice and also show little self-efficacy about their abilities to write. In addition, these students reported that they simply want to get assigned writing tasks done and did not show much interest to persevere to write. In contrast, students in later phases of interest development (i.e., the phase of extending interest) showed an emerging individual interest, and they devoted a lot of time to their writing. Unlike their counterparts in the earlier phases, they were found with a higher level of self-efficacy about writing; moreover, they reported themselves scaffolded by the presence of interest and persistence in writing.
There are several contributions that should be noted in the current study. Firstly, our study adopted the interest loop model for a thorough examination of how students start to develop interest in programmable robotics, and more importantly, how interest will contribute to robotics creation. Our research is among the few studies that go in-depth for investigation of interest in different phases. To our best knowledge, it is the first study that has conducted mediation investigation for the interest loop model proposed by the IDC theory (Chan et al., 2018). More importantly, this current study attempted to provide a comprehensive picture of how interest in different phases is related to robotics creation. Indeed, findings of the study supported that programmable robotics as an effective pedagogical tool can successfully trigger students’ interest in learning (triggering interest), which leads to a greater chance for active engagement of students in programmable robotics activities (immersing interest), and consequently leads to students’ greater awareness of the value in programmable robotics activities (extending interest). Our findings also indicated that when young students are in the phase of immersing interest, that is a phase with more intensive focus, happiness, and efficacy, they are more likely to involve in robotics creation, and consequently, they grow a stronger sense of meaningfulness regarding their creations as well as robotics education as a whole.
Secondly, though we believed that robotics activities have tremendous potential to improve learning, previous researchers cautioned for inadequate empirical evidence to prove the impact of robotics on the K-12 curriculum (Williams, Ma, Prejean, Ford, & Lai, 2007). Many of us believed that robotics provides a source of energy that can be used to motivate children’s learning. In general, results of past studies showed a learning gain with the use of robotics (e.g., Álvarez & Larrañaga, 2016; Atmatzidou et al., 2018; Toh et al., 2016). However, some other studies also found that there are indeed cases where the use of robotics has not brought any significant increase in young students’ learning (e.g., Barker & Ansorge, 2007; Hussain, Lindh, & Shukur, 2006; Lindh & Holgersson, 2007; Nugent, Barker, Grandgenett, & Adamchuk, 2009; Sullivan, 2008; Williams et al., 2007). Therefore, robotics may be reduced to fashion, if researchers do not provide empirical evidence to support its impact on young students’ academic outcomes. These mixed findings on robotics education could be due to the fact that previous research tends to be descriptive in nature, rather than empirical designs that utilize quantitative data collections, experiments, or comparative methods (Chambers, Carbonaro, & Murray, 2008; Petre & Price, 2004). More specifically, most previous studies relied on observation and interview results with small sample sizes (e.g., Barker & Ansorge, 2007 [n = 14]). In this regard, we felt the urge to explore robotics education with a more rigorous empirical design. Unlike the previous research, our study employed a relatively large student sample (N = 801) for the empirical investigation of how students’ interest in programmable robotics will develop and how interest will eventually convert into robotics creation (one of the indicators of students’ learning outcome) using SEM analytical approach. In this study, we provided additional evidence that validates the assertion of past studies: robotics activities are useful and beneficial to young students in terms of academic outcomes, especially in primary school contexts.
Practical implication
In our study, programmable robotics activities are considered successful to trigger, immerse, and extend the interest among young students. Our results showed that in order to promote robotics education successfully, a sharp focus on raising students’ interest and curiosity is of the uttermost importance. This finding served as a reminder for educators and teachers to design the pedagogical approaches that can trigger and maintain students’ interest. As previously discussed, when situational interest is elicited and maintained over time through repeated engagements, effort, and self-efficacy, a more stable and enduring form of interest, namely individual interest, is expected to emerge. Therefore, teachers may realize the critical importance of providing situational interest for robotics activities before their students are able to form individual interest, and consequently become interest-driven creators. In our study, we considered teachers as the most important facilitator in robotics education. Yet, many of them do not realize their potential role in helping students to develop interest in programmable robotics (Lipstein & Renninger, 2006). In fact, most teachers show fixed mindset: they think that students either have or do not have interest, without realizing that they can actually contribute to their students’ development of interest. Based on the review on existing interest literature, there are several pedagogical suggestions to offer for teachers who strive to improve educational practice. In the earlier phases of interest development, teachers should put more effort in fostering students’ positive feelings towards robotics education to ensure solid content knowledge to be obtained by their students. Orchestration of a supportive environment for learning programmable robotics may also enhance students’ positive affective for interest development. For example, Long and Murphy (2005) demonstrated the impact of classroom teachers’ own interest for the subject matter on students’ interest. Their findings highlighted the importance of teachers’ friendly communication and role-modeling in students’ development of interest. We considered these external supports particularly critical in the earlier phases of interest development, because teachers are most able to help students feel positive about their emerging abilities within the context. Positive feelings may be facilitated by offering choice in tasks (Flowerday & Schraw, 2003), promoting a sense of autonomy (Hascher & Hagenauer, 2016), being supportive for developing the knowledge, and building a sense of competence (Hidi & Renninger, 2006).
What can be said is that programmable robotics has great potential to assist in teaching and learning. However, positive learning outcomes are not guaranteed just by the simple application of robotics, as it depends on how teachers play their roles as facilitators in class. As previously mentioned, their knowledge, attitudes, and behaviors all impact students’ learning effectiveness. Teachers are strongly encouraged to put more effort in pedagogical designs in order to increase responsiveness, strengthen supportive behaviors, and reinforce interest-driven learning for better student outcomes (Kong & Wang, 2018). However, a general lack of teacher professional development is one major obstacle for teachers to come up with effective pedagogical approaches that can stimulate students’ interest in learning. This fact brings up another issue in robotics education. Vollstedt, Robinson, and Wang (2007) pointed out that another obstacle in implementing effective robotics education is rooted in insufficient teachers’ trainings on computer use. They observed that many teachers show discomfort when using computers, which impedes their confidence in answering students’ questions. This discomfort with the use of computers makes the teachers reluctant to teach programming to their students. Even worse is that students’ motivation of learning will be further impeded when they receive negative signals from their teachers.
In addition, the Curriculum Development Council (2015) pointed out that most students lack the hands-on experience in school. Therefore, they pointed out the necessity of strengthening students’ ability by applying their skills and knowledge to real practice. Previous researchers and educators questioned whether the traditional, teacher-centered curriculum can meet the diverse learning needs of students. Traditional teacher-centered approach focuses on the transmission of knowledge. The content of knowledge, learning activities, and goals are set by teachers. On the other hand, student-centered approach focuses on the cognitive learning process of students. This approach addresses different needs of students and encourages them to take initiates by exploring what they want to know with more autonomy (Pedersen & Liu, 2003). As researchers suggested (McCombs & Whisler, 1997), one of the major advantages of student-centered approach is that the students are likely to develop interest in the learning process. Therefore, more educational practitioners should realize that student-centered approach can be a key element in the successful implementation of robotics education in class. In our study, the programmable robotics course was designed for teachers who can adopt an interactive problem-solving approach by fully engaging students to learn and use technological devices, such as mBot robots and computers, for the creation of robotics artifacts. In this course, teachers are facilitators, rather than dominators. They play a supportive role by providing timely feedback and instructions, when students are in face of difficulties.
Our programmable robotics course may serve as a stepping-stone, and we encourage that more interested researchers invest their effort in the further refinement of the course content that we developed for more effective learning of students. Only a well-designed course on programmable robotics will stimulate and maintain students’ curiosity and interest in learning.
Limitations and future research
Like any other research, several limitations will be discussed as follows. Firstly, all participants were given a self-rated survey questionnaire to report their learning interest in programmable robotics. According to previous researchers (Demetriou, Ozer, & Essau, 2014), one major limitation of self-report method might be the possibility of providing untruthful answers, because participants tend to answer the questions in a socially acceptable way. This phenomenon is known as social desirability bias. In addition, response bias might also impair the validity and reliability of the questionnaire, which is an individual’s tendency to respond in a certain way regardless of the question (e.g., disengaged participants will rate all questions identically). These biases in answering the survey are likely to contaminate the data quality. Thus, we highly suggested that multiple sources of ratings (e.g., teachers’, peers’, parents’ ratings) and more objective scores (e.g., project scores, test scores) can be adopted in the future research so as to derive a more accurate and precise examination on how robotics education can benefit young students. Moreover, we also encourage the inclusion of qualitative data in future quantitative studies, especially for empirical studies adopting survey designs. Although survey designs are known to be cost-effective, easy to administer, and capable of collecting data from a relatively large number of respondents, they still face the vulnerability of lower validity rate (see discussions above) than some other types of design, for example, in-depth interviews and focused group discussions (Wright, 2005). Unlike a survey questionnaire with rating scales, these approaches are conducted with an intention of revealing participants’ views and attitudes in great details. Thus, empirical studies that include interviews or discussions might reach more comprehensive findings as qualitative data can triangulate the statistical evidence of which numbers sometimes fall short of a good explanation.
Secondly, this study adopted a cross-sectional design to investigate the relationships of the study variables. Specifically, we attempted to investigate the interest loop model proposed by the IDC theory. Though our results showed preliminary mediation evidence for the validation of interest loop: triggering interest ➔ immersing interest ➔ extending interest, this cross-sectional design was inadequate to test the recursive loop (i.e., a virtuous circle of enhanced interest) proposed by the theory, that is extending interest can further trigger interest in programmable robotics. In the future, longitudinal designs with multiple waves of observations are preferred in order to test the recursive loop of the interest model.
Thirdly, according to the IDC theory, we should seriously consider how and why students’ interest can be triggered, immersed, and extended before we design learning activities for the purpose of encouraging students to create. Our study has not yet explored in details how different pedagogical designs can contribute to the cultivation of lifelong interest of students in the programmable robotics context. Past studies revealed that problem-based learning approach increases the perceived meaningfulness of learning (Sobral, 1995) and project-based learning approach encourages innovation and triggers interest of learning (Marasco & Behjat, 2013). Therefore, future studies should be conducted to further our knowledge regarding the impact of various pedagogical designs on students’ learning interest, more specifically, how these pedagogical designs uniquely benefit the cultivation of interest in different phases.
Up till now, most of the applications of robotics introduced in educational settings are unnecessarily narrow (Rusk, Resnick, Berg, & Pezalla-Granlund, 2008). Mitnik, Nussbaum, and Soto (2008) also pointed out that the use of robots in programmable robotics is very often treated as an end or a passive tool in learning activities, where the robots have been constructed or programmed (Mitnik et al., 2008). They further emphasized the importance of providing multiple pathways into robotics to ensure active engagement of young students by taking care of their diverse interests and learning styles. For example, young students who show no interest in traditional approaches of teaching and learning of robotics are likely to be motivated when robotics activities are introduced in a more innovative way (e.g., storytelling), or in connection with other disciplines and interested areas, such as music and art (e.g., Rusk et al., 2008). We advocate that future researchers devote more attention to exploring a broader way of robotics activities in school settings, where students’ learning interest can be successfully triggered and sustained.